NASA-CR-158960

Final Report

The Determination of
Measures of Software Reliability

THF DETERMINATICN CF N79-15674

{(NASA-CR-158960)

MEASORES CF SOFTWARE RELIABILITY Firal

Report (Aerostrace Corp., El1 Sequndo, Calif.)

118 p HC 226/%F AO1 CSCL 09°F Inclas
G3/€1 42154

F.D. MAXWELL

THE AEROSPACE CORPORATION
El Segundo, Calif. 90245

Prepared for

NASA Langley Research Center
Hampton, Virginia

under Contract NAS1-14392

NASN

National Aeronautics and
Space Administration

Scientific and Technical
Information Office
1978

Report No.
NASA-CR-158960
ATR-79(7590) -1

THE DETERMINATION OF

MEASURES OF SOFTWARE RELIABILITY

Prepared by

F. D. Maxwell

December 1978

Advanced Programs Division
THE AEROSPACE CCRPORATION
El Sequndo, Calif. 90245

Prepared for

NASA Langley Research Center
Hampton, Virginia

Contract No. NAS1-14392

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
NASA-CR-158960
4. Title and Subtitle 5. Report Date
December 1978
The Determination of Measures of B, Parfarming Driaieiinn Gods

Software Development

7. Author(s) 8. Performing Organization Report No.
F. D. Maxwell
B. C. Corn 10. Work Unit No.

9. Performing Organization Name and Address

Contract or Grant No.

NASA1-14392

The Aerospace Corporation 1.
El Segundo, California

13. Type of Report and Period Covered

12. § ing A N d Address .
ponsoring Agency Name an r Final, August 1978

NASA Langley Research Center
Hampton, Virginia

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract
Measurement of software reliability was carried out during the development of data
base software for a multi-sensor tracking system. The failure ratio and failure
rate were found to be consistent measures. Trend lines could be established from
these measurements that provide good visualization of the progress on the job as a
whole as well as on individual modules. Over one-half of the observed failures

were due to factors associated with the individual run submission rather than with

the code proper.

Possible application of these findings for line management, project managers,

functional management, and regulatory agencies is discussed.

Steps for simplifying

the measurement process and for use of these data in predicting operational

software reliability are outlined.

17. Key Words (Suggested by Author(s))
Software reliability
Reliability measurement

Error types

18. Distribution Statement

Software failure ratio Unlimited
Software failure rate
Software reliability trend
19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price”
Unclassified Unclassified 123

* For sale by the National Technical Information Service, Springfield, Virginia 22161

111

Report No.
ATR-79(7590)-1

THE DETERMINATION OF MEASURES
OF SOFTWARE RELIABILITY

PREPARED BY: APPROVED BY:

F. D. Maxwell, Mana er B.C. Corn, Director

Statistical Design and Analys1s Digital Processing Office
Section Development Directorate

Electronics and Optics Division

ACKNOWLEDGEMENTS

The work reported here was performed by The Aerospace
Corporation under Contract No. NAS1-14392 with the NASA Langley
Research Center under the technical guidance of Mr. G.E.
Migneault. Tt utilized data collected from a software
development project sponsored jointly by the USAF Rome Air
Development Center, with Mr. Frank Sliwa as the Project
Engineer, and the Metric Integrated Processing System (MIPS)
team at the USAF Space and Missile Test Center under the
direction of Mr. J. A. Salazar. The contractor for the
development of the pertinent MIPS segments is Federal Electric
Corporation.

Acknowledgement is given to Dr. E. Pate who contributed to
the computer program implementation of the statistical
analysis. Much valuable assistance was received from Mr. Sam
W. Beddingfield and Ms. Ruth Pervorse in the preparation of

this manuscript.

')
.. .. NG PAGE gLANK NOT FREA

vii

:NG PAGE BEANK NOT FiiXiwe

¢ ¥ >
> P
* g -

SUMMARY

The objective of this study is to establish the
feasibility, cost, and benefits of software reliability
measurement in a specific environment, and to formulate from
this study recommendations for more general applications. The
ultimate goal of the entire program is the determinaticn of
software failure rate parameters analogous to hardware failure
rate or wear-out rate parameters.

During the first phase of this effort, data collected
on categories of errors encountered during a software
development was analyzed to determine if consistent measures
could be derived to use as valid indicators of reliability.

The failure ratio (number of failed runs F observed in N total
runs in a given elapsed time) and the failure rate (number of
failed runs F observed in t seconds of CPU time in a given
elapsed calendar time) demonstrated qualification as such
measures.

The principal effort since the last report has been to
apply rigorous statistical analyses and non-parametric methods
to the existing data base. Linear and non-linear orthogonal
polynomial regression analyses confirmed the validity of the
failure rate and ratio as potential measures of reliability. A
high positive statistical correlation was shown between failure

severity and error category, fzilure severity and error count,

ix

and error category with error count. In addition, a
preliminary investigation into reliability forecasting showed
the ensemble averages of both the failure rate and ratio are
stationary and statistically significant.

The failure rate and ratio measures appear to remain
valid indicators when subjected to the parametric and
non-parametric analyses described in this report. The
preliminary attempt at forecasting was statistically valid but,
this, of course, needs to be validated by real-world
observitions. Problems encountered in data collection due to
lack of direct control over the process highlighted the need
for formalizing this critical portion of any future effort e~ven
if the cost increases. Operational avionics systems should
provide a superior source of failure data since the recording
of such’ information is routinely performed as a part of

aircraft maintenance by personnel other than the software staff.

II.

IIT.

Iv.

VI.

CONTENTS

SECTION I

INtrOQUCE I ON .ttt et eecenscoososnceansancssssecsass

SECTION 2

Background....... Cetetesnnscesnana

Project ASTROS Data.....

Viking Dat@..ceiireoeesenocacaennnnnne

SECTION 3

Descriptive and Comparative Analyses of LSDB Progra

Modules.....cve... cerecancnn .o

Project ASTROS Data....

“ e

@ % 0 060 4B S8 et es e s LS

e« s 6 e

Viking Dat@...eivsertiesecscrennsassscssonssannsana

Effects of ScheduleS..veveeounonnan

SECTION 4

Further Analyses on the Existing Data Base

Regression Analysis....

LI Y

Composite Module Regression....

Module Compa:ison......

Non-parametric Analyses........

Non-parametric Results.....vcvevevencres

e o s 00 ® % e 0 % 0 0 et
uuuuu L L B R I S S)
&6 v e 00 % e 00 0 00 e .
---------- “ v o .o

L L I

Non-parameiric Correlation..,.........

SECTION 5

Reliability ForecastS.....esuss.

SECTION 6

Significant Findings....

.

* 50 000

11

13
13
22

28

31
32
32
33
44
50

50

53

(3RS

VII.

APPENDIX
APPENDIX
APPENDIX

APPENDIX

SECTION 7

Conclusions and RecommenlationS....ceeeveeonnocas

A:

B:

C:

D:

REFERENCES.........O.l..l.l....'.............
COMPUTER PROGRAMS 6 0 06008 5 5800060000800 s
DATA ACQUIS ITION FORMS & ® 0800000 e00s 0080 s Rl

BIBLIOGRAPRY"....‘I‘......’...l..‘....l.....

72
A-1
B-1
c-1

b-1

LIST OF FIGURES AND TABLES

FIGURE PAGE
5-3 Failure Ratio - Number of Statements 61
5-4 Failure Ratio - Number of Statements............. 62
5-5 LDG Failure Ratio.e.cirieriececessennsceoscsnsnnss 63
5-6 LDI Failure Ratio.eseeceesecececcsccennsssonancas 64
5-7 LSD Failure RatiO...ecececcasncesctacoccccsanccnns 65
5-8 BDP Failure Rat@.....cceeveseccccsossvecnncassaneas 66
5-9 BDT Failure Rate - Number of Statements.......... 67
5-10 LDG Failure Rate - Number of Statements.......... 68
5-11 LDI Failure Rate - Normalized by Number of
StatementS..csvesceccscescssossacscanssssssnsns 69
5-12 LSD Failure Rate - Normalized by Number of State-
MENES.ceeesscssossesosssssosrsvssescosssocsscesnsans 70
TABLE
3-1 Success/Failure of Runs by Module.....oeeeceavnns 20
3-2 LSDB Statement TyPEeS...cecesesscscccncsccosnssancs 21
3-3 Viking Failure Source Distribution.......cvccc0.e 23
3-4 Viking FAailureS.ceeesesssccansosescnsssessncsonss 24
3-5 Viking Operating System Recorded Failures........ 26
4-1 K-S Tests for Normality of Variables (Successful
RUNS) ¢ c s v vnesosesossssssanosssenssssssossssceanss 46
4-2 K-S Normality of Variables (Runs with Detected
EIFOCLS) cevevsecssossnssosssansasscsssssnsossscsss 47
4-3 Non-parametric Correlation of Variables.......... 49

xiii

LIST OF FIGURES AND TABLES

FIGURE PAGE
2-1 MIPLSD Visual Table of Contents......cceevveenss 10
3-1 Distribution of Program Activities in 2700 Run
SaAMpPle.cciveecscasessveccccssssnssnsssecnasosanse LS
3-2 Number of Statement Changes in 2700 Run Sample... 16
3-3 Types of Errors Encountered in 2700 Run Sample... 17
3-4 Number of Runs by Module in 2700 Run Sample...... 18
3-5 Distribution Of CPU....seeceeeescsesvcsnscssesnsass 19
3-6 Viking Failure RatiO....ecseecceeseacssaccnnnsans 27
3-7 LSDB Total Failure Ratio...cceieeeenveeaceeneesss 30
4-1 Composite Failure Rat€..cceesesvcesssssasesasnesss 34
4-2 Composite Failure RatiO.ceceseceeencsssacssnseanss 35
4-3 Failure Rate Normalized by Number of Statements 36
4-4 Failure Ratio Normalized by Number of Statements. 37
4-5 Failure Ratio Normalized by Number of Changes.... 38
4-6 Failure Rate Normalized by Number of Changes..... 39
4-7 LDG Failure Rate Normalized by Number of Changes. 40
4-8 Composite Failure Rate Normalized by Number of
ChangeS.veeceeseosasssonessnsscsssssnosssssnasce 41
4-9 BID Failure Ratio Normalized by Number of Changes 42
4--10 LDG Failure Ratio Normalized by Number of Changes 43
5-1 Composite Failure RatiO..e.eeoveoacesscsosassnsnss 57
5~2 Composite Failure RatiO...eseesceserosecssanssans 58

xiv

LIST OF FIGURES AND TABLES

FIGURE PAGE
5-3 Failure Ratio - Number of Statements 59
5-4 Failure Ratio ~ Number of Statements............. 60
5-5 LDG Failure RatiO.eciecececccsenesccsossssssesosnnns 61
5-6 LDI Failure RatiG...ceceevsccsccsocnssensssnscoss 62
5-7 LSD Failure Ratio..ecccsiececescccscrsoccsncncenvns 63
5-8 BDP Failure Rat@...ccceeesvcsessrsssscssscsesnssss 04
5-9 BDT Failure Rate - Number of Statements.......... 65
5-10 LDG Failure Rate - Number of Statements.......... 66
5-11 LDI Failure Rate - Normalized by Number of
StatementsS..ccececescsecsocscscnsssscssnssvcsace 67
5-12 LSD Failure Rate - Normalized by Number of State-
MENES.cueesssssrosssccnsesossasscsossnssosvosnsnsnns 68
TABLE
3-1 Success/Failure of Runs by Module...oeecsnrennces 20
3-2 LSDB Statenent TYpPeS..e.cscsesncscsssssnssnvcscsns 21
3-3 Viking Failure Source Distribution.........ceccs. 23
3-4 Viking FAilureS.ceeeeeccessncesacsscsssesnssscnns 24
3-5 Viking Operating System Recorded FailureS........ 26
4-1 K-S Tests for Normality of Variables (Successful
RUNS) v vt soevocess sssvesaconsncsossnnsssansssscses 46
4-2 K-S Normality of Variables (Runs with Detected
ErrOCS) eesveesssocesonssossssossassnsscsssssnsosse 47
4-3 Non-parametric Correlation of Variables.......... 49

Xv

1. INTRODUCTION

This report summarizes work performed at The Aerosnace
Corporation on a software reliability measurement study - < th
Langley Research Center, National Aeronautics and Space
Administration, under Contract NAS1-14392. The specific
objective of the study is to establish the feasibility, cost,
and benefits of such measurement in a specific environment, and
to formulate from this study recommendations for more general
applications of software reliability measurement directed
towards the goal of the determining of software failure rate
parameters analogous to hardware failure rate parameters. A
collateral objective is the identification of any other factors
possibly contributing to software reliability that might be
observed during the course of the data collection and analysis
effort.

This study was initiated in April, 1976. The work
accomplished between April, 1976 and April, 1977 was reported
in September, 1977 in NASA Contractor Report 14-205°. This
report covers the work performed between April, 1977 and June,
1978.

Data analyzed in this study came from two sources:

(1) Project ASTROS (Advanced Systematic Techniques for Reliable
Operational Software)3, a joint effort of the Space and

Missile Test Center (SAMTEC) and the Rome Air Development

Center (RADC), both organizations within the Air Force Systems
Command; and (2) the NASA Viking Progr.m at the Jet Propulsion
Laboratory.

For the purpose of this study we have defirned reliable

software as follows:

It is software that is correct (capable of execution
and yielding correct results) and that meets other
user requirements such as timing and interfacing with

the environment.

This concept is consistent with an earlier statement, "Software
possesses reliability to the extent that it can be expected to
perform its intended functions satisfactorily.”1 There is
justifiable ccncern about attempting to base measurement on
"intended functions", but more restrictive formulations tend to
prevent recognition of reliability problems arising from poorly
drawn specifications. A need exists to evaluate software
reliability against formally specified, as well as against more
loosely defined or implied requirements.

For reliability measurement, the software is operated
over a period of time; segments of the operation are scored as
failure or success by the qualitative criteria cited above;
and, from these scores, an indicator of meas:red reliability is

generated.

The principal indicators derived from he data are the

failure ratio and the faiiure rate. The failure ratio, U, is

defined as

U = F/N (1)

where F is the number of failures observed in N runs in a given

calendar period, usually one month. The failure rate, u, is

defined as

u = f/t (2)

where f is the number of failures observed during the total TPU
time, t seconds, accumulated over a giver -~alendar period,
again usually one month. These failure wectrics, and

particularly their complement, the reliability metrics,

R=1-1U=8/N (3)

where S stands for the number of successes and

MTBF = t/f (4)

are analogous to commonly used hardware reliability

expressions. The relation of these metrics to those used by

other researchers in software reliability is described
elsewhere.2

The failure ratio and the failure rate are obtainable
from records usually maintained in the development of critical
software; they are consistent in time and among modules for the
specific program studied; and they are potentially useful for
management and research purvoses.

The use of the failure ratio, i.e., the ratio of
failed runs to total runs in a given period of time, ac a
measure of socftware reliability is one of the innovations
introduced in this study. Previous investigators had simply
reported the number of failures per calendar interval. To the
extent that the number of runs per month (or other interval) is
not uniform, these measures will yield different results. For
most purposes, the measure that will be preferred is the one
that has the smallest variability. In the earlier report on
this study it was shown that the failure ratio affords a more
stable measure of reliability.

In the course of the study it was observed that many
runs ended in failure due to improper data setups, job control
cards, or other factors not directly associated with the code
deveIoped. By counting as failures only those runs in which
the cause of the failure resided in the program proper, we
generated the program failure ratio.

Both the total failure ratio and the program failure

ratio exhibit a general trend with time. By the use of
regression, trend lines can be generated for the development
period and/or for the most recent intervals to provide
indicators of progress or lack of progress. The generation and
use of these trend lines is discussed in the previous

report.3

The principal effort since the last report has been to
verify the validity of these measures by more rigorous
statistical analyses and to determine if meaningful
correlations could be observed between variables existing in
the data base. Linear and non-linear orthogonal polynomial
regression analyses corroborate the effective use of the
failure rate and ratio as measures of reliability. A high
positive correlation was shown between failure severity and
error category, failure severity and error count, and error
category with error count. In addition, a preliminary
investigation into reliability forecasting showed that the
ensemble averages of both the failure rate and ratio are
stationary and the confidence limits were defined.

The failure rate and ratio measures appeared to remain
valid indicators when subjected to the parametric and
non-parametric analyses described in this report. The methods
for analyses that were developed may be generalized to a broad
class of problems; however, the specific results should only be

generalized to comparable data bases.

Problems encountered in data collection due to lack of direct
control over the process highlight the need for formalizing
this critical portion of any future effort. Operational
avionics systems should provide a superior source of failure
data since the recording of such information is routinely
performed as a part of aircraft maintenance by personnel other
than the software staff.

During this study, a search of the literature for
generalized models of software reliability was conducted. The
bibliography resulting from this search is contained in

Appendix D.

2. BACKGROUND

As noted earlier the data for this study came from two
sources: (1) Project ASTROS at the Space and Missile Test
Center; and (2) NASA's Viking program at the Jet Propulsion
Laboratory. These data bases are briefly described in the

following sectior..

2.1 Project ASTROS Data
The ASTROS data that was analyzed in this report

was collected during the development of the Launch Support Data
Base (LSDB), a portion of the Metric Integrated Processing
System (MIPS). MIPS provides the primary metric (i.e.,
positional) data processing for test or trajectory measurement
activities on missiles, aircraft, and satellites. MI.>
includes control, real-time, and non-real-time egments. LSDB
is a non-real-time segment that includes data management
functions, coordinate transformations, and other scientific
calculations supporting track ueneration from multiple
sources. It is run prior to launch operations without
real-time constraints.

The design of LSDB was started in September, 1975.
The software failure data was collected during development of
the LSDB from the initial coding through the in-house test

phases prior to acceptance by the government. During the

development, the number of lines of code continually increased
as runs were being made, and the effect of these changes on the
reliability measurements is discussed later in this report.
Diving rrogram development there was no unusual pressure to

¢ atrol reliability for current runs, but there was adherence
t> normal standards for reliable software.

LSDB was developed as part of a demonstration program
on structured programming techniques. Personnel appeared to be
m tivated by their participation in such a demonstration, and
thie data collection efforts and management attention may have
constituted confounding human factors that affected both the
data and the measurements.

The MIPS system specification required a modular
program structure, hierarchical program design, and execution
ordered programming. In addition to these overall
requirements, the decision was made to create a highly
discipline programming environment for portions of the
non-real-time segment that include the LSDB. This environment

included the following:

i1, tor-down development
b. structured code

program support library
4. chief programmer teams

e, strirccured walk-throughs.

The data accumulated for the evaluation phase provided
a unique oppor.unity to conduct software reliability
measurements during program development.

The LSDB program is composed of five major components
(bere referred to as "modules") consisting of approximately 40
independent subroutines (referred to as "utilities"). The
modules, linked with controls, are illustrated in Figure
2-1. The entire LSDB Program comprises approximately 25,500
lines of FORTRAN source code, of which the modules account for
about 18,000 lines. Of the total, approximately 40 percent of
the module code consists of comments. Most of the LSDB code
was written in structured FORTRAN, translated into ANSI FORTRAN
by means of the S-FORTRAN precompiler, and then compiled on an
IBM 360/65 computer. Small segments were written in the IBM
assembly language (BAL). Originally, five programmers were
assigned to LSDB. After a few months, the participation was
reduced to a staff of three plus a programmer-librarian.
SAMTEC Data Documentation

Ior every run made on LSDB, a run analysis report form
was completed that listed the date, the module name, CPU time
for the run, and coded information on the number of changes and
run steps as shown in Appendix B. The run was scored as a
success or failure by th:e development group. If a run was
identified as a failure, additional information, contained in

the failure analysis report, was provided identifving the type

i
|
' |
| S I
! ™S 10 MOD "
: — |
t
: MIPS CONTROL |
U W. _______ 1

(LINK)
STUFIT FEREIT BASRIT WRITON GODOIT
2.0 3.0 4.0 5.0 6.0
LDI LDS BDK/T LSO BDP
Figure 2-1. MIPLSD Visual Table of Contents

io

and cause of failure. This form was also prepared by the
program development personnel., This form is the second exhibit
in Appendix B.

It was not known a priori what factors in the
programming and computer system environment might affect
software reliability. For that reason, the stipulated
reguirements for the software product (here LSDB) as well as a
description of the general environment was included as part of
the record of this Software Reliability Measurement Study.
Forms for reporting this background information are reproduced
in Appendix B. The primary use intended for this information
is for future comparative evaluation of the reliability
measurements on LSDB with those from other sources. It is
hoped that analytic information about the effects of
programming, test, and management techniques can be gained from
such comparisons.

Data were received from SAMTEC through June of 1977
when the developing contractor's contractual obligation to

collect the data ended.

2,2 Viking Data

In order to establish an additional source of data,
the cooperation of the Jet Propulsion Laboratory staff
responsible for Viking ground data prccessing was solicited and

received. This system was fully operational with limited

11

development effort to correct errors and to make enhancements.
Data were received from April, 1977 through September,1977 in
the form of status reports and IBM computer operating system
tapes. The June tap~: was unreadable and the September tape was
not received.

No source of data equivalent to the SAMTEC Run
Analysis form was available from JPL. However, it was possible
from the information contained in the error discrepancy
reporting system (VISA's) to determine which errors were
actually software-caused and to perform some failure rate and

ratio calculations.

12

3. DESCRIPTIVE AND COMPARATIVE ANALYSES OF LSDB PROGRAM
MODULES
The raw data collected during the LSDB development at
SAMTEC was examined during this phase of the study to determine
if other measures than failure rate or ratio could be derived.
The analyses were done to provide insight into the detailed
analyses that might be possible, or that should be performed.
Variables such as the number of runs by module, types of runs,
number of statement changes, number of lines of code, types of
errors and types of statements such as assignment, logic and
control were computed and compared. The results are given in

the following paragraphs.

3.1 Project ASTROS Data

The total number of available records of runs
available from Project ASTROS is 2,718. The sample selected is
2,700 (1,389 for 1976 and 1310 for 1977) of which 514 were
unsuccessful. With the exception of 41 runs, all efforts
indicated on the forms were in the category of program
development. The distribution of program activities in the
2700 run sample is given in Figure 3-1 and indicates a dominant
mode of compile and run. The distribution of the number of
statement changes is given in Figure 3-2. The severity of
failure in 490 cases was local job failure only; four other

cases were reported as miscellaneous and one was reported as

13

real time. The error category distribution is given in Figure
3-3; the dominant modes were logic errors (97) and operation
errors (115). Single errors were detected in 419 of the
failures; however, this measure is questionable for the actual
number of errors since the sequence of detection of errors in
sequential runs is unknown.

The distribution of the number of runs by Module is
given in Figqure 3-4., The BDP was the least used Module (185
runs); the LSO was the most used (492 runs). During 1976, the
LDG Module had the longest runs (CPU=300 sec.); all modules,
except LSD, had at least one run of 199 sec. CPU time. The
1977 pattern of module use showed an increase for BDT, LSD and
LSO. LSD showed the longest run of 312 CPU. The distribution
of the percent of total CPU time by module is given in Figure
3-5.

The percent of successful runs by module is tabulated
in Table 3-1. The average success rate for all modules
improved from 77.1% in 1976 to 85.0% in 1977.

The source code for the entire Metric Integrated
Processing System (MIPS) was obtained from the contractor and a
SNOBOL program (see Appendix A) was written to categorize the
LSDB program in terms of statement type per module. This was
done to assess the correspondence between error rates and

program complexity as reflected by statement type. The

14

sydweg uny QL7 Ul 8911ATOY wesdoxd Jo ucnnqruisid ‘j-€ sandtgy

SNNY 40 HIGWNN
0001 008 009 00y 002 0
T T] _ | (BUISSIN)
() MNV1E
@e) 43IHLO

JH4WOD
089) HLIM NNY

NNY B
(9%) 311dW03

(T) JU4dWOI

15

arduwieg uny oLz ur sedueyn jusdwajels jo requny z-¢ aandrg
0002 9001 0021 008 00v 0
[!] _]
002- 43N0 (L
i 002-051 (68 —
o1 0SI-101 -
6 001-91 (8¢
8 GI-16 @ =
L 05-Tp]
9 Op-1€ ey
g 06-12 (s —
v 02-11 _
¢ or-1 (15
2 0 (4]
\ SIINVHD (801 —
3007 10 ¥3GWNN P —
(UL)
AR

(Burssiw)
NNV

— N A T N o ™~ 00 o

|

L
o
O
O

t6

RELATIVE ADJUSTED

ABSOLUTE FREQ FREQ
ERROR CODE FREQ (PCT: __{PCT)
COMPUTATION 5 0.2 1.0
LOGIC 97 3.6 19.2
DATA INPUTS 17 0.6 3.4
DATA HANDLING 12 0.4 2.4
DATA OUTPUTS 3 0.1 0.6
ARRAY 1 0 0.2
DATA BASE 4 0.1 0.8
OPERATION 115 4.3 22.8
EXECUTION 41 1.5 8.1
OTHER 87 3.2 11.2
JCL 51 1.9 10.1
KEYPUNCH 12 2.1 14.3
NO ERROR_21% 81.3 “
TOTAL 2100 100.0 100.0

NO ERROR (219)

Figure 3-3. Types of Errors Encountered in 2700 Rur Sample

17

BDPL . (185

BDT . 314

BID . 6299

LDG —. (49

LDI . 458

LSD . (533)

LSO . (492)
, | l | 1
0 200 400 800 1000

NUMBER OF RUNS

Figure 3-4. Number of Runs by Module in 2700 Run Sample

15

161 o
961 O
AN3OT)

dwiy do jo uonnqraisig

"g-¢ @andry

0S1__as1 1@y 201 QI8 109 dad
| 4] ¢ e e
o Lot ¢ 88
. . 1 S
¢'el |9t e |
4 o €81
0°02 4 661
AV b
7 S p2
€61 €91 9Ul 96l L1 per 0L NV

O N
et

nm
i

&
Ndd 1INID¥3d

&

19

Z°ve L°ze P°0T P 1T £°8 S°LT $°S IVLIOL 40 % TINAOW
0Tel Ll 86 9¢1 24 601 [YAA L TVLOL
120 4 1°2 Z'e ST v 1 0°¢ G* SNNY¥ IVILOL d40 %
SNNY
L°LT T°6 £°1¢ Vel $'9T 0°LT L°€¢ JTNAOW ‘IVLOL d0 %
9°8¢ 8°tl 8 vl ¢ 01 Z°6 6°61 9°'¢t STUNTIVI
TVLOL d0 %
96T 9S LS (Y4 02 81 68 L INNOD FANTIVA
6°61 L°0¢ '8 8°6 6°9 SVl 0°Ss SNOY TIVIOL d0 %
SN
£°¢8 6°06 L°8L 9°98 S°te 0°t8 €°06 JTNAOW IVLIOL 40 &
b ed 130 44 9°6 9°11 AN 1°L1 8°S9 S§SFDIMNS TVLOL 40 %
PITT 19¢ 1954 L01 621 16 061 S9 IN.QO §8d20NE
TYLOL 0s1 as‘1 1a1 D41 aig Lad dddg
VIVa LL6T

NN RE SRR YRR PR RN R E RN AN RN AN AN RN RN RN SRR NS S U N R RN AR P E RN NN RN AR R E S LA R RN EF R ¥

9¢€00° -~ HDNVOIJINDIS “WOQEIYd JO0 STIYDIA 9
9°21 6°91 [X4 P61 L°ET 1°9 1°8 'IVLOL 40 % HINAOW
68€T SL1 GET c2g 69¢ 061 S8 €11 TYLOL
oV l°t 0°s 0°s 0°¢c 9°T 1°C SNAY IVLIOL d0 %
SNNY
veit L'81 L°1¢ 0°92 Lyl 6°G¢C L°SC JINUOW IVLIOL JO %
€°LT 8°¢1 0°¢c 0°¢t 8°8 6°9 1°6 STANIIVA
IYLOL 40 %
11322 SS by 0L 0L 82 (A4 (X4 LNOOD HFNTIVA
9°8 8¢l T1°81 £°PvT L 11 S°v 0°9 SNOY IVLOL J0 %
SNOY
9°g9 £°18 £°8L 0°¥L £°G8 1°tL €°vL FTINAOW IVLOL JO %
21T 8°LT $°tc 9°8T1 ¢ st 6°S 8L SS300NS TYWLOL J0 %
1L01 0Z1 I61 [4°Y4 661 291 £9 L&) LNAOD S$SHIINS
TYLOL 081 as1 1Q1 oda1 dig Lad ddad
VIVa 9L61
?INpPOW AQ suny jJO Injled/ssa3oong ° a1qey

20

14-Y4") Séct LesY T¢ST 6,61 S3juswajelzs jo °ON
6LV 13 A7 c6t L0t Lt SANODJS NdD
S € 14 T [4 2anTieg jo 13pin
y100° Leoo’ LTO00" T¢00° 8200° @anTied weiboig
T 14 t S [4 18p10 ITxF
600T ove 09 TeE €96 3Txd
0t 14 0 14 0 0 0 TT3un og
8 Le L 01 S t [4 @se) og
6 S (4 0 0 [4 1 3T24)H
L LZA S¢ 8¢ i s¢c (44 opun
S Lot [4:] St 142 L1 6¢ 104 ©a
14 L6C (4128 8s 1¢ St TL 9sTd
[4 9e?¥ (438 ¢ot 08 Sy L8 23no2xy
1 118 voe eVl 601 L0 8Vl II
13 1T 8l 8¢ 9L L9 8% 1Ted
9 (41 0¢ 8 34 9t £l souateatnbz
a3pao 8Te30] 051 141 oa1 fifles:t daad

sadAl juswajels gasn

‘-t °Tqey

21

assumption was made that invocation of an external routine
(subroutine call), logical decision and branching, and looping
were statements of greater complexity than assignment. The
distribution of statement types between the various modules of
LSDB is tabulated in Table 3-2.

The results of the tabular analysis are shown in Table
3.2. The results indicate no clear pattern or relationship

between variables or statemenc ._pe, use and failure ratio.

3 Viking Data

The Viking data exhibited failure characteristics that
are similar to the ASTROS data in a number of ways. For
example, Table 3-3 shows that the source of failure could be
attributed to the program in only 28% of the total. During the
final month of data acquisition, the program errors const®tuted
only 16% of the total. Most of the error sources were not
explicitly identified.

The data for the monthly distribution of CPU time,
number of runs, failure ratio and failure rate are given in
Table 3-4. There was no apparent significant decrease in the
recorded failure ratio or failure rate prior to the fourth
month for data acquisition. However, at the end of the six
month interval, both the failure rzte and failure ratio were
reduced to approximately one-half the beginning levels. Figure

3-6 is a plot of the failure ratio for software only as well as

Ve

0s

vs
V101

LT
91
81
ve
9¢
S€
¥IAHIO

¥ _£1 _SSs
1 14 9
1 0 9
1 £ L
0 3 L
1 £ 01
0 0 61
HONNdA@d/1oC TYOINVHOIW WYaD0ud

NOILNEIYLSIA IDYN0S FIUNTIVL ONINIA
£-¢ d'I9vL

TYLOL
YIEWILIIS
4LSNoNv
A1ne

aNac

AR

TIddv

23

Zvo°o

TL0°0

8IT1°0

180°0

o9s moa ydd
*JIVY JiANTIvd

ddvl qavd

€9T0°0 0sS
0Lz20°0 80¥v
BLEQOO ey
£SE°0 0L9

(INA 2. o9s moH
JUNTIVL nao

SUNTIVA ONINAIA

t~¢ d1gvd

ViIVad ddvd ON

60V T

SLOT

YL¥d ON

Lzel

TEST

SNNY

*2inTTRJ ® Se YSIA yoea

8¢t

A

67

143

0s

¥s

SVYSIA

bur3sadisjury

YIEWILAIE

LSNONv

Xiag

anNar

AYH

11°1dv¥

LLeT
HINOW

24

the composite of all VISAs. The number of data points does not
provide an adequate date base for more detailed analyses. The
results do indicate a possible trend in which the failure ratio
for software alone declines at a lower rate than the
composite. The total number of recorded program rfz2iluce did
not change significantly during the last four months of data
acquisition; however, a significant increase in the failure
incidence in some part of the system caused an increcase to‘a
level greater than the third month. The data are adequate to
permit interpretation of this change. The trend, prior to that
time, indicated that the total program was approaching a
limiting level that would be asymptotic to the program failure
rate.

The failure ratio and failure rate for the operating
system are recorded in Table 3-5. Both improved by an
approximately factor of three over the test interval. The

final ratio was 0.01.

25

*?InTIe3 ® St YSIA yoea bui3iasiadiajul,

6010°0 v00°0 0ssS 60F1

TLT0°0 900°9 80V SLOT

adey peq - e3ep ON

Se20°0 L00°G (44 4 Lzel

£€8¢0°0 ¢T10°0 OLy TeST

098 .01 J1ad otaed 09S QT “suny
x‘938Y danyted ?antied do

saanTied poapiroday walzsAg buijzeisdo buryIa

9 asnbny
L Atonp
L aunp
01 Aey
61 Trady
saaniied “LL6T
?iem33jos YIUORW

‘s-t 91qEL

FAILURE RATIO

0

L) e

15

ALL VISAS

SOFTWARE ONLY
| | |

M J J A
MONTHS

Figure 3-6. Viking Failure Ratio

27

3.3 Effects of Schedules

Scheduled reviews have an apparent effect on the rate
of failure. Figure 3-7 reveals the effects of schedulding of
LSDB activities as reported by VAFB. The notation (n)

refers the reader to a point on Fiqure 3-7.

1) The high points: In-house testing of the module
LDI started in early 1976 (1) . 1In April the
testing was reduced in order to reevaluate the
testing. In April to May period the testing was
resumed. (3) represents the final testing of
LDI and the testing of LDG. (5) represents the
testing of modules BDP, BDT, BID, LSD, and (7)
represents the testing of LSO.

The low points: (2) was a period in which the
documentation for the PDR (Preliminary Design
Review) was produced. Points (4) Sept 1 and
(6) December 15 were the times of the first and

second CDR. (Critical Design Reviews).

Reviewing the above data it is clear that, at least in the

gross sense, the number (ratio) of failures occurring in a

module vs time is strongly a function of managerial action.

28

Telling the team what to test and when to test it influences
the maxima and minima values of the curve. However, the
magnitude of the maxima is a dependent function of the number
of errors in the code {although how many are discovered is

again a function of the testing procedure).

29

0.30

0.5

0.2

0.15

0.10

0.05

L1 1]
MmoJ A

Figure 3-7. LSDB Total Failure Ratio

30

4. FURTHER ANALYSES ON THE EXISTING DATA BASE

During the first phase of this study, failure rate and
ratio measur:ments were plotted and simple linear regression
analyses performed.3 To gain the maximum benefit from the
data collection process, it was decided to subject the existing
data base to more rigorous analyses both to verify the validitv
of pos.ible measurements of reliability and to determine
meaningful data that should be collected for future studies.

Since the data were acquired temporally, general time
series analyses ar«¢ possible for most parameters. The methods
include linear and non-linear regression on time,
autocorrelation, limited spectral analyses and stochastic
forecasting. The results of the latter three methods are
deferr=d to the next section.

Where the measurements were not adequate for
parametric analyses, non-parametric analyses werz performed.
These methods include tests for normal.ty, goodness-of-fit to
theoretical distributions (deterministic models), correlation
of variables or parameters, and tests for similarity and
difference of variables.

An additional and importan* method for analysis is the
between module comparison for internal validity of
characterization and homogeneity. The comparison for external

validity was reported previously.3

31

4.1 Regression Analysis

Nonlinear regression analyses were performzd on
the failure rate and failure ratio measured varameters. The
method used, in most cases, was orthogonal polynomial
regression. This method is somewhat more complex than simple
least squares regression. However, the precision vers's
complexity trade off of parameter estimates, and adaptability
for assessing improvement achieved by adding coefficients for
higher order terms justify the complexity. The method involves
the computation of a set of coefficients for each data point
and remapping of the orthogonal polynomials back in%o a

fundamental regression equation.

4.1.1 Composite Module Regression

Nonlinear (second order) regression was applied so as
to observe the asymptotic behavior of the data. The results of
the regression for composite modules over 16 months are given
in Figures 4-1 and 4-2 for the rate and ratio respectively.
The results normalized by the number of statements are given in
Figures 4-3 and 4-4. The average failure rate decreased from
an initial value of approximately 1% to a value of
approximately 0.1% at the end of the observation of program
development. The failure ratio c¢f failed to total runs dropped
from 15% to 5% (approximately) during the observed development

interval.

32

As expectvd, the second order composite regression,
tor data stratified by week, produces the same general range as
linear regression for failure rate and failure ratio estimates
at the extremes. However, the more accurate fit reveals that
the trend is toward an increase in €ailure rate and failure
ratio from the initial value and a subsequent decrease with
time. The regression demonstrated by the normalization of

statement changes is shown in Figure 4-5.

4.1.2 Module Comparison

Comparisons of the trend in failure rate and failure
ratio normalized by the number of statement changes shown in
Figures 4-6 through 4-10. Consistency in the decrease of the
failure rate and failure ratio of all modules both at the
beginning and at the end of the observation period was observed.

It may be seen that the general forms of the

regression curves are reverted J's, inverted U's, with some of

the inverted J's having no significant up-turn.

33

COMPOSITE FAILURE RATE (x 10°h

0.30

e
R

e
3

0.15

0.10

0.05

0

1976 1971

O
\l()%\
0 3 6 9 12 15

MAMIJ JAS ONDIJF MAM]

Figure 4-1. Composite Failure Rate

34

COMPOSITE FAILURE RATIO (x 107})

0.30

0.5

e
3

0.15

e

0.05

— 1976 1917
| —
— O
o)
o)
\ O
O
o
(N C
o 0 O
0)
0
= o
Bl | J L | o
0 3 6 9 12 15
MAMIJJASONDIJFMAM
Figure 4-2. Composite Failure Ratio

35

COMPOSITE FAILURE RATE (x 10°%)

0.241— 1976 1977

o
3
hl

0.16 |~

0.12 |-

0.08 —

0.04

"O“O_Q—U—O"‘Q"O—CH’HHB&O-O—é—o——
0 3 6 9 12 15
MAMIJ JAS ONDIFMAMI

Figure 4-3. Failure Rate Normalized by Number of Statements

36

COMPOSITE FAILURE RATIO (x 107)

0.40r 1976 1977
0.321
0.4}
0.16}-
0.08}—
—r 0 Q00O

0 3 6 9 12 15
MAMIJ JAS ONDIJF MAM

Figure 4-4. Failure Ratio Normalized by Number of Stateinents

37

COMPOSITE FAILURE RATIO (x 107)

0.48
1976 1977
0.40F
0.32}—
0. 24
@)
0.16}—
O
O
0.08]—
O /
0]
& 0
) 1 1 {000, |
3 6 9 12 5 O 18
MAMIJ JAS ONDIFMAMIJ JA

Figure 4 .5. Failure Ratio Normalized by Number of Changes

38

BID FAILURE RATE (x 10°%)

0.4
1976 1911
0.20

0.16

0.12}-

o
&

e
g

9 e 15
MAMIJ JAS ONDIJFEMAMI J

Figure 4-6, Failure Rate Normalized by Number of Changes

39

LDG FAILURE RATE (x 10°%)

0.4r
1976 1977
0.201
0.161
0
0.121— o
0.08F—
') O
O.Mr
O O 4 o
O CP \
1 |) N D . SN
C 3 6 9 12 15 18
MA MIJ J AS OND IJF MAMIJ JA

Figure 4.7. LDG Failure Rats Normalized by Number of Changes

40

0.28 —

0.20 4
-—
'g
5 0.16 T
<<
o
l
€ 0.12F
—d
<
e
2 0.08}-
Q.
=
Q
(&)

1976 1917

Figure 4-8,

Composite Failure Rate Normalized by Number oi Changes

41

BID FAILURE RATIO (x 107)

0.40 — 1976 1977
0.32 |
0
0.24
@)
0.16 }—
@)
0.08 7
O
O O ami——
tlo—»>l oo0ooo0o0lo-Llo bo
0 3 9 12 15 18
MAM ONDJ FM AMIJJ A
Figure 4-9. BID Failure Ratio Normalized by Number of Changes

42

LDG FAILURE RATIO (x 107

0.48 — 1976 1977
0.40 +—
0.32 |-
0.24 |-
0.16 i— ©
© o o0
°© 5
(| S — i Lyt ot
0 3 6 9 12 15 18
M AMIJ JASOND JEMAMI JA

Figure 4-10. LDG Failure Ratio Normalized by Number of Changes

43

This characteristic, of course, is the eguivalent

quadratic form for the first three terms of the negative

exponential given by

eX=1-x+%x2 + €x
2

for X 2 1 and € (X) <

Wi

4.2 Non-varametric Analyses

Before any statistical tests are performed, the data
must be examined for level of measurement and distribution.
For data having measurement precision sufficient for parametric
tests, the sample distributions of undetermined form must be
checked to determine if there is sufficient goodness-of-fit to
established theoretical distributions. For validity, such
tests require that underlying assumptions be met, Failing
either criteria, the data must be analyzed using non-parametric
techniques. Transformations are legitimate only if the data
can be transformed and the inverse transform of the results can
be ma red back into the original domain of the data for

consistent interpretation.

44

Tests for goodness-of-fit to a normal distribution
were made on the number of statement changes, CPU time and
failure severity. The results of the Kolmolgorov-Smirncov tests
are given in Table 4-1 for the successful runs and Table 4-2
for the runs in which program errors were detected. The
resuits indicate that none of these variates can be assumed to
have come from a normally distributed population with any
reasonable confidence.

A test for goodness-of-fit to a Poisson distribution
was made on the CPU time by runs distribution . The results
indicated the probability of the sample distribution having
come from a Poisson distributed population was less than
0.00001. The same results were observed for success/failure of
runs. Tnerefore, Poisson models appear to be inappropriate
models for the wvariables.

Tests were also made to determine the probability that
the number of reported statement changes for successful and
unsuccessful runs could have come from the same population.

The results of the tests indicated the probability to be less
than one chance in 1.00,000.

Another test was made to check the corr~boration of
work category (program modification) similarity for successful
runs with runs having failures. The resulcs of a Kol.mogorov-
Smirnov test indicated a probability greater than 0.9999 that

the work categories were from the same population.

45

TABLE 4-1

K-S TESTS FOR NORMALITY OF VARIABLES

(2136 SUCCESSFUL RUNS)

VARIABLE MEAN STD MAXIMUM 2-TAILED

DEV. ABSOLUTE TEST
DIFFERENCE P (H;)

NUMBER OF 5 5 - 0.34 0.0000+

STATEMENT

CHANGES

CPU TIME 28.39 46.41 0.26 0.000+

(Sec)

46

TABLE 4-2

K-S TESTS FOR NORMALITY OF VARIABLES

{514 RUNS WITH DETECTED ERRORS)

VARIABLE MEAN STD. MAXIMUM 2-TAILED

DEV. ABSOLUTE TEST
DIFFERENCE P (Hg)

NUMBEP OF 15 1.5 - 0.29 0.0000+

STATEMENT

CHANGES

CPU TIME 33.29 88.28 0.35 0.0000+

(Sec)

FAILURE 2.9 0.61 0.52 0.0000+

SEVERITY

47

Kolmogorov-Smirnov tests were performed on variables
which were measurable at the appropriate level and for which a
sufficient number of runs were recorded. The tests were made
on the distributions for the number of statement changes in
successful runs compared to unsuccessful. The outcome is that
which might be expected intuitively. Specifically, the
probability that the number of changes was similar in both
cases was less than 0.001 which is stronger than might be
expected. 1In contrast, the work categories for successful runs
or unsuccessful runs are indistinguishable. The probability of

them being from the same population is 0.999.

48

TABLE 4-3

NONPARAMETRIC CORRELATION OF VARIABLES

VARIABLES COMPARED CORRELATION S1IGNIFICANCE
{ORDERED) COEFFICIENT LEVEL
F ure severity with 0.978 0.001

er.or category

Failure severity with 0.917 0.001
error count

Error category with 0.903 0.001

CPU time with number 0.248 0.001
of statement changes

Work category (Program Mod.) 0.128 0.001
with Program Activity

CPU time with Program -0.461 0.001
Activity
Program Activity with -0.3570 0.001

number of statement changes

CPU time with error category -0.153 0.001
CPU time with error count -0.147 0.001
CPU time with failure severity -0.138 0.001

All other Parameter Comparisons 0.11

49

4.3 Non-Parametric Results

The relationships between variables were examined
using distribution-free (non-parametric) methods. The methods
included Spearman's non-parameti : correlation analysis,
Kolmogorov-Smirnov tests for similarity (independence) and

Chi~square tests for comparability.

4.3.: Non-parametric Correlation

Table 4-3 presents the results of the non-parametric
correlaticn analyses performed on variables that were measured
at the appropriate levels. It may be observed that the highest
positive correlation (on a scale from -1 to +1) is (0.978)
between the failure severity with the error category . This
high value for correlation should be interpreted as being a
measure of the concentration of failures for local job failure
only. 1In contrast, the error category distribution is quite
broad and multimodal. The second highest correlation is also
attributable to the concentration of failure severity into one
category. A similar effect was observed for correlation of
error count (number of errors) with any other variable. As it
should be, the correlation of error count with the cateqgory was
high (0.903).

The next group of correlation coefficients are not as
impressive but perhaps provide more insight into relationships

that are not as intuitively obvious. The CPU time was

50

correlated with a number of variables. The CPU time is
distributed over 177 categuries with a general distribution of
the highest percentages in the first 12 categories; for the
next 12 categories the CPU time dropped to approximately
one-third the average for the first 12 and continued as a long
tailing-off for the remaining categories. The general form is
that of a negative exponential, which of itself is not
significant. However, in terms of potential inference rather
than form, the characteristic is similar to a Chi-square
distribution with three degrees-of-freedom. This may or may
not be due to chance, but if it is significant, future studies
might be directed toward the decomposition of the CPU time
dependency upon a small number ({(4) of factors. 1It should also
be cautioned that apparent variables may not be indeperdent
but interactive insteac. 1In any event, the data as recorded
does not permit factor analysis, and therefore, the
non-parametric correlation of CPU time with other variables was
computed as given, in Table 4-2.

The variable found to have most significant positive
correlation with CPU time was the number of statement changes
(0.248). The coefficient is not high in absolute value but it
is relatively high compared to other wvariables. The two
relatively high negative correlations are due to the ar trary
ordering of the program activity measured variabl.: which is

comprised of combinations of compile/run activities. The

51

correct interpretation of the results should be that there is
relatively high correlation of program activity with CPU time
and the number of statement changes, respectively. The other
correlations are of lesser magnitude; the proper interpretation

is as given by the sign in the table.

52

5. Reliability Forecasts

Any sequence of tests or experiments must eventually
be concituded. The key question is when to stop. There are a
number of answers to the question that are premised upon given
criteria or values. 1In either case, the future reliability
must be addressed. For example, the criteria could be the
maximum deviation of a sample from a deterministic estimate, or
the maximum mean-square-error between samples at a given
confidence level. Another answer could be to stop when a
measure of failure converges, or wtien the forecast converges to
some value or has a well defined trend that passes through
zero. The forecasts for the failure rates and failure ratios
were computed for the composite (ensemble average) of the five
modules and the individual modules.

The method for forecasting is based on work first
published by G.U. Yule and refined by Box and Jenkins.7 It
is a stochastic method that dces not depend upon the
assumptions requived for a deterministic and stationary model.
The autoregressive inteqrated moving average (ARIMA) method is
-omewhat a misnomer in that the "integration" evolved from a
hardware application concept which makes use of a nonstationary
summation filter.

The data plots (as stratified by month) and forecasts

for nine months beyond the 16 month test period are given in

53

Figures 5-1 and 5-2 for composite failure rate and composite
failure ratio respectively. The 95% confidence bands for
forecasts are indicated. Where the lower band goes below zero
it is omitted. It may be seen from Figqure 5-1 that the
forecast for the composite failure rate converges to
approximately 0.02. Figure 5-2 reveals that the forecast for
the composite ratio trends toward zero after remaining at
approximately 0.025 for three months.

Figures 5~3 and 5-4 present additional normalized
failure ratio forecast examples. In Figure 5-3 the forecast of
BD? failure ratio as normalized by the number of statements
predicts that the trend would approach zero asymptotically in
approximately six months following the end of the recorded
tests. The trend declined from the initial stochastic estimate
of approximately 0.02 per 10? gt~ _ements. The -oturn toward
the end of the test period is attributable to the number of
changes to the program mcdule. Figure 5-4 reveals a similar
forecast trend for the 3DT module except the zero asymptote is
predicted for eigh: months after the end of the recorded data
inter~al. ‘'the absence of an upturn is apparently due to fewer
progras chavges. The LDG failure ratio as presented in Figure

6~5 is -elatively ‘lat (on the average) for the first 10 months

54

and begins a downward trend in January of 1977 toward zero in
June of 1977, The forecast predicts that the normalized
failure ratio of the LDG Module should have converged toward
zero by the beginning of 1978, providing the type of
perturbations introduced after the end of the data acquisition
period were not significantly different from the perturbations
encountered during the 1% months in which data were collected.
The LDI and LSD failure ratios are given in Figures 5~6 and 5-7
respectively and are quite similar to LDG as previously
discussed.

The failure rate characteristics with forecasts are
given in Fiqures 5-8 through 5-12. The BDP module exhibits
failure rate characteristics in Figure 5-8 that are quite
similar to the BDP failure ratio. However, for the BDT module
the correspondence between the failure rate, as presented in
Fiqure 5-9, and the failure ratio is not as good. The best
forecast estimate based on all past BDT module measurements
produvces divergence from zero. However, this may be
influenced by the wide divergen~e of failure rate at the
beginning of the test period. If only the last 10 months of
the test data were used the forecast would likely converge.
This module obviously had rather severe problems initially.
The best estimate for the failure rate of the LDG module is
almost linear and the forecast indicates earlier convergence of

the failure rate approaching zero sooner than the rate for BDT

55

module and closer to the same time as the BDP module. The LDI
and LSO failure rate characteristics, as exhibited in Figures
5-~11 and 5-12, are not significantly different, as a function
of time, than the failure ratio forecasts.

The essence of this analysis is that the ensemble
average of both the failure rate and failure ratio are
stationary and provide a basis for forecasting the program
reliability. 1Individual module forecasts may not be as well
behaved. Future study should provide an opportunity to test

verify these methods for forecasting.

56

W VYWwWJ4JFaQNOS VYI ITWYW4T aQNOS

1l

bl

12

ajey Lanjreqg ajrsodwon *7-§ dIn81r g

8l

]

N\
Y

8161

T

Vg .
s *

1161

Y
a1 cl 6 9
1

9161

S0°0

01°0

st’o

8
o

8
o

(I_OI X) VY J¥NTIVY A ISOdWOD

57

oryey 2anyreg ottsodwon *7-¢ aandig

WVWJ4dr ONOSVYT I WVYWJ4dT0aNOSY rrf wyw
1z b 12 81T ¢l A 6 9 ¢ 0
[{ j \ | =] T w T T T 0
\\-/Il\ !
] 0
0L°0
170
o
| O —{02°0
|
|
A a0
|
8161 L161 9261 ~dog-o

((-01 X OlLVY 3¥N71Y4 3LISOdWO)

WY W 4

SIUBWIIRIG Ju JaqUInN Aq PIZIJCWION — OljeYy danyle Jag

f ¢ NO SVY (f WV W4 QG NO SV T
| 4 81 sl A 6 9

*€-g 2andig

fF wvw

1e e
I e——l

8161

%—i
/)\/I

L161 9161

80°0

91°0

b0

e 0

op°0

8y 0

(E_OI X) OlLlVY 3yN1Ivy das

59

§jUaWDI LIS JO I3qUUnN Aq PIZI[BWION -~ oley 2anjied LJd ‘-G 2indig

WYWJT7aONOS VY (I rTrWwywd4rf aNOS VI WV W
L 174 | ¢4 81 Gl ¢l 6 9 t v
|

80°0

910

- Qt .:

—]2€°0

—405°0

8161 1161 9161 —lgpp

(E-OI X) Ollvd 24n1ivd 108
60

g3UdWIIRIS JU Jaquuny Ag pazieusdo) - oLRY 3Infred Scrl

-

cc~-g AITET g

WVYW 4 GNOS VI f NV W4T GNOS VYT I WV W
12 #e 2 81 st A 6 9 ¢ 0
r ; ¢]M"|01m.nonnal|¢o O 1 S O ©
« o O OO
o

—4

-]

8161 LL61 M 9161 _]

§0°0

91°0

A

0

RY°C

(E_OI X NOWLYY 3dmivd 901

ol

gjuswialeiq o aaquany! Aq pazifewlon = O13ey 22an7ed Iq]

*g-g ?Indr g

W YW 47 8 NOS VI TWVYW4dTIr aoaNO SVY T W
12 7 104 81 a 6 9 £ 0
B S eSS e N L a—
{ O O
— M o o
__“ !]800
w :
~ |
| | —91 0
” * -
» m
| ' ..uqu
_ —p 0=
f [g
=3
=
>
— 05
: s
" s
| ~{ov°0
|
8161 w L1161 9161

8b

U

83UawiajeIg Jo JaquunN Aq pazifewaoN - oney anjleg OST ‘.-G 2andr g

W YWJ4r oONOSVYTITrWwWVYWI4dITr aGNO SY I ITWYVYW

12 ve | t4 81 9! ¢l N 6 9 . m oo
I J\rc] o H o

i
O @]
0o

80°0

|

v
—
o

(S-OI X) OllvY 3yNnTivd 0S7

_ —4veo

—2¢e°0

|
2
o

8161 1161 9261 gy

§3uUaWIajeIS JO Iaquuiny Aq PIzZI[RWION ~ ey 2anfred JAd

W VYW 4l OQNOS VT

e

e

|t/ 81

r

WYW 4l aQNO SV

61

¢l

_

_

8161

LL61

9

r r w vw
oot

*g-g aandi g

_

961

-

0

0

VR

¢l’o

0l ¥ 31vy 34nTivd 409

o0 ==

020

70

64

S3UWIjeIS JO IaquunN Aq PIZIJPWION - 938y Janfied 1ad ‘6-G 2andr g

W VYW 4 aNOS VI ITwWVYywid4rf aQNOSY T T
9

W
L2 74 | ¢4 8l sl 1 6 2 0
! I I [end 1]
—{80°0
@)

—{21°0

o —91°0
—02°0

8L61 LL61 9161 —

/Al

(V_OI X) 3ivy 3dNTiv4 104
65

8juUdWajeIg JO IaquinN Aq PIZITeULION — 3jey anjted HJT °0f-9 2an3dr g

W VYW JTFT aNOS VI ITWYWJd(IaONO SY T WV W

2 ve 12 81 ¢l a6 9 ¢
I W . — RN S B et e S e WU I I o—b
—C
o o]
O
—{90°0
| S
[~p]
!wo.o.VJ
=
i S
w o2
| o GLES
<
m.
o190
Jozo
8161 1161 9261]

v2°0

606

gjuowalels JO 1aquIny Aq PazIJEUTiON — 93®Y danjred IQT ‘Fi-§ 2andig

WVYWA4Tr anNoOSVY lrrwewi4raNOSY T WVW
2 W @ 81 a A 6 9 :
~ [[LT T Y o°7
C o
o
8161 L1161 0161

ANV

91°0

02’0

ZALY)

(V_OI X) VY 39NTIV4 107

67

8jUdWIAI RIS JO J3qunNN Aq PIZI[EWJION — 33BY 2an(ted OST '21-6 2and1g

WY WJd [aNOSY Irwywd4dr aeanNOSYTI I WYVYW
L2 e |14 81 6l A 6 9 € 0

r T] — oot uU [o —oa=6m0

— 210

—91°0

8161 LL61 9161 _

vZ2°0

(V_OI X) VY 3¥MIY4 0T
68

6. SIGNIFICANT FINDINGS

Specific findings from this study and potential

applications include the following:

1. Meaningful measurement of software reliability
during development is feasible. These measurements should be
useful to line management as a systematic method for assessing
the progress of software reliability and identifying and

comparing sources.

2, Data acquisition for measurement of software
reliability requires a deliberately distinct effort. The data
normally recorded for systems records are not adequate for
software reliability measurements. All personnel involved

should be fully aware of this limitation.

3. Most of the failures during development were not
due to coding errors but, rather, were caused by associated
data processing procedures. Such an outcome suggests that
management might be able to enhance program reliability during
development by establishing standards for data handling and
program operation in general. Time, effort, and costs should
be reduced if appropriate procedures are implemented and

conscientiously followed.

69

4. The failure processes are not accurately described
by deterministic methods; stochastic processes are apparent.
Therefore, simplistic generalized models should be closely
scrutinized before being employed. A generalized method may be
adapted to modelling of a specific case or set of data.
However, the converse is no: legitimate. Specifically,
changing coefficients and exponents (of a deterministic model)
that are derived from a single set of data does not produce a

"generalized” model of anything.

5. Scheduling or other management actions appear to
have a significant affect on the rate of occurrence of failure
during development. Such interactions are apparent
contributors to widely varying excursions in failure events.
Line management, project management and functional (software
development) management should be alert individually to the

potential for such induced problems.

6. The natural outcome of some of the measurements
produced data that were stratified into a limited number of
categories. The analysis of such data must be restricted to
theoretically sound and verified methods. Non-parametric
(distribution free) methods should be used where appropriate
and inverse transformations of results (as well 1as
transformations of data) cannot be validated. Pretest of data

acquisition procedures and instrumentc is strongly recommended.

70

7. Stochastic methods may be used at the end of a
given time interval for estimating future reliability. This
capability leads to criteria for definition of when to stop
development testing. Examples are a forecast trend that is
asymptotic to an acceptable level of error; or is stationary
about zero. This should provide hoth management and
researchers with a basic tool for compariscn and assessment of
programs for meeting future reliability goals, comparative
reliability and comparison of the benefits of continued testing

against incurred costs of time and effort.

71

+-~iNG PAGE BLANK NOT Py

7. CONCLUSIONS AND RECOMMENDATIONS

Data collected during the development of a software
system needed for ground based launch support at the Air Force
Space and Missile Test Center, Vandenberg Air Force Base,
California, and from the operational Viking ground data
processing system at the Jet Propulsion Laboratory, Pasadena,
California was analyzed to determine if any valid measures of
software reliability could be made that might have utility when
applied to operational avionics systems to predict their
reliability.

The failure rate (number of failures divided by CPU
seconds for the calendar interval) and the failure ratio
(number of failures divided by the total number of runs for the
calendar interval) emerged as valid measures. They were
subjected to linear, and to nonlinear orthogonal polynomial,
regression analyses which confirmed their validity as
indicators of system stability.

The composite failure rate and ratio data were also
used to forecast the reliability of the system for nine months
following the seventeen month test period for which data
existed. The forecast predicted that the failure rate would
converge to 0.002 and the ratic » uld converge to near zero
after an initial three months at 0.025. This forecast could

not be validated against real-world experience since the data

73

collection process had ceased after the seventeen month
period. This lack of corroborating data emphasizes .he
criticality of defining the scope of the data collection
process at the outset to insure the availabili'y of necessary
data.

The raw data plots of failure rate and ratio exhibited
both high and low points. Project staff at SAMTEC was queried
as to any events that might have caused these and it was
learned that the high points were all directly related to the
start of intensive periods of testino and the lows to relative
inactivity due to program review preparation. The concerned
project manager should note from this that other than pure
software problems can impact apparent progress.

The techniques of measurement discussed in this report
appear promising as indicators of reliability. It is
recommended that they be applied to operational avionics
systems with a recorded history of failures to accomplish the
furtner step of establishing an effective measure o. software
reliability analogous to hardware mean time to failure.
Careful attention to data collection should be paid to insure
the quality and continuity of the data base, includiny
separation of actual software changes. 'The establishment and
analysis of this data base would be a major contribution

towards the goal of system certifiability.

74

APPENDIX A

REFERENCES

JOHNSON, J. P. "Software Reliability Measurement Study"
SAMSO-TR-75-279, Aerosvace Corporation, El Segundo, Ca. 8
December 1975.

HECHT, H. "Measurement, Estimation and Prediction of
Softvwire Reliability"™ NASA CR-145135, National Aeronautics
and Space Administration, Washington, D. C., January 1977.

HECHT, H., STURM, W.A., and TRATTNER, S., "Relijability
Measurement During Software Development,” NASA-CR-145205,
National Aeroniutics and Space Administration, Langley
Recearch Cer . Hampton, Va., September 1977.

HATSTEAD, M. H., Element of Software Science, Elseiver
Publishine Co., New York, 1977,

KOPETZ, H., "On the Connections Between PRange of Variab’
and Control Structure Testing®™ International Conference on
Reliable Software, Los Angeles, 1975.

KENDALL, M.G., and STUART, A., The Advanced Theory of
Statistics, 2d ed., 3 Vols., Hafner Publ:shing Co.. New
York 1968.

BOX, G. E. P., and JENKINS, G., Time Series analysis
Forecasting and Control, Holden-Day, San Francisco, 1970.

7 -« .LiNG PAGE BLANK NOT 20~

. ‘ APPENDIX B
"<.~UiNG PAGE BLANK NOT Rags#% . - er PROGRAMS

SNOROLS (VERSION 3.7, JUL. 10, 1971}

FROPRIETARY COMPJUTER SYSTEMS INC

ESTLIMIT = 500000 l
SANCHOR =) 00000020 2
Q0000020 3
INFUT("'DISK' ,1,80) 00000040 <
00000050 5
DEFINE(*INTTHOD()*) 00n00060 6
CEFINE('PRIN0D()) _00C02670 7
00000030 8
PATL = C #umm FU 80003090 9
PAT2 = " 00000100 10
PAT3 = ¢ £0000110 12
PAT4 = “EJECT" 03000120 12
PATS = LEN(S} . P1 LEN{1) . P2 LEN(66) . P3 LEN(8) . P4 00000130 13
PATe = “IMOLICIT" | “REAL" | "INTEGER"™ | “LOGICAL™ 14
PAT7 = “gOMMoNt 000001590 15
PATS = “EQUIVALENCE" 06000166 16
PATS = “DIMENSION" 60000170 17
PAT10 = “DATA" 00000180 18
AT11 = CALL" £0000199 19
® PATTERN FOR SXIFPING ONE OR MORE BLANKS
PATI2 = KULc | SPAN(" *) 20
¢ PATTEFN FOR IF STATEMENTS
PATLZ = “IE' PATI2 "¢* 21
* PATTERN FCR EXECUTE STATEMENTS
PAT14 = PAT12 "ENECUTE" PAT12 "(* c2
* PATTERN FOR STOP STATIMENTS
PAT1S = "'sTCP" 23
*® PATTERN FOR ELSE STATENENTS
PAT16 = "ELSE" 24
* PATTERN FOR ALL END STATEMENTS
PAT1/ = “gip" 25
*® PATTESN FOR LETTERS
PAT18 = "ABCDEFGHIJKLMNOPQRSTUVHXYZ™ 26
* PATTERN FOR DIGITS
PAT19 = "01133455789" 27
% PATTEN FOR ALFHINUNMERICS
PATZO0 = PATLIS PAT19 28
* PATTERN FCR IDENTIFIERS
PAT21 O PAT12 ANY(PAT1S8) (NULL | SPAN{PAT20)) 29
% PATTERN FOR <IDENTIFIER> = TYPE ASSIGNMENT STATEMENTS
PAT22 = PAf2l PATLZ ‘=¥ 30

00000210 31
* PATTERN FCR <DO FOR™ STATEMENTS

PAT23 = DO PATIZ "FOR" 3
* PATTERN ®0OR <UNDO> STATEMENTS

PATZ4 = “UNDO" 33
PATTERN FOR FROCEDURE STATEMENTS

PLT25 = "PROCEDURE" 34
* PATTERN FOR <CYCLE> STATEMENTS

PAT26 = “CYCLE" 35
% PATTERN FOR <DO CASE> STATEMENT ° _

PATZ7 = DO FAT1Z “CaSs™ 36
* PATTERN FOR <CASE> STATEMENTS

FAT28 = "CASE" 37

* PATTIPH 7" <FMITE> STATFMENTS

b-1

PATSY = “WRITE™ 38
% PATTERN FOR <FORMAT STATEMENTS
PAT3C = “FORMATY 39
% FATICFN FCR <IDENTIFITR™ (<ARR™ ; = TYPE ASSYGNMENT STATEMENT
PAT3Y = FATI1 PATIZ ¢ EREARC™)™) € ") | **)¥*) PATI2 "= “«0
% PATIERN FOR ~SUBROUJTINE> STATEMINTS
PAT3Z = “SLBRQUTINI™ (34
PATTEDY FOR ~RETLON> STATEMENTS
PAT3IY = “RETURN" a2
#* PATTERN FOR BLOCK DATA
PAT3S = “BLOCR" 43
~ K‘AT?T::: FQR [
P35 = PAT1C CSECT™ @4
PATTESN FOR <MQ UNTIL>
PAT3% = DO UNT..Y 45
® PATTECN FOQ «MiMEYIST > —_
PAT37 = “NAMELIST" 46
® DPATTERN FOR <REWIND>
PAT23 = “REWIND*® w7
® PATTETN FOR . QEAHS
CAT3I9 = “READ 8
® PATTERN FOR DO LABREL>
PATG0 = DO LASEL" 49
% PATTEDN FQOQ <L ATCL>
FaTel = “LABEL" 50
% PATTERN FOR ~EXIT>
AYG2 = “ENIT™ Sl
* PATTERN FOO DO WNILE>
PATWS = DO LMILE” <
BUF = DISX 00000220 &3
INITMCO(00000230 54
READLOQP EBUF = DISK :F(NIT?H QCCLRoG0 S5S
0000250 So
BUF PATZ :S(SKNIP) €0000C00 S7
BUF PATYI SONERMODULE) 0000270 53
EUF PAT3 IS{CO™MENT? 20000260 59
GUF FATe SIREADLOCP) 209G 60
LUT PATS 3. TP el
P2 " IFIREADLOOT) oLnle510 62
P3 PATI7 :G(ENDY) 03
f3 PAT13 :SUIFSY., [
P3 PAT11l :S{CAWLS() 00000370 ¢5
P3 PAT14 ISLEXS) 66
P3 PATe SITYPEST! 20000320 o7
PY »aTle :SLELST) (3
P3 PATS :S{EQUIVST) 00000340 59
P3 PAT7 :SICONNST) 00000330 70
P3 PATIY ISININST) 7
P3 PAT30 :SLLIFST) 72
P3 FAT9 :S(DIMST! 00000350 73
P3 PATI0 :S{DATST} 00003360 74
P3 PATIS :S(STPSTY 75
P3 PATIS 1Si030ST) 70
P3 PATZqe 18{NDUNST) 7
P3 PATIS IS(NQFROIST 7
P3 PATZo :S(KROCYLST) 7o
P3 PATIT 1S(NCICCST) 30
P3 PATZ® “SINCCST) a1
P3 PATI :S{SUCST) &2
PS_?AYSS 'S(Rlﬁ?tl 33

B-2

P3 PAY34 1S(BLKST) (.13
P3 PAT3S :S(READLOOP! 3¢5
P3 PAT36 :S(DOUNT) &6
P3 PATRT :S(NAMLST) 87
P3 PAT38 :SIREWST) a8
P3 PAT39 :SC(READSY) 89
P3 PAT4Q :S(DOLAEST) 90
P3 PATG]l :S(LeBST) 91
P3 PATS2 :SCEXITST) 2
P3 PATA43 :StDORNST) 93
P3 PAT22 :S(ASGST) 9%
P3 FPAT31 :S{ASEST) 5

OUNREC = NOUNREC o)
QUTPUT = BUF :(READLOOP)

00000390 <6
00000400 97
00000420 93
00000530 9%

SKIP EBUF = DISK ‘FIXIT)
BUF PAT1 :S(NEWMODULE)IF(SKIP)

00C004%0 109
00000450 101
00500450 102
00300470 103

NEWMCCSULE FRTMCIO)
INITHMOD() :(READLOOPR)

COMMENT NOCCM = NOCOM ¢ 1 :(PEADLOGP)

0009450 104
02000490 105
00CC0500 106
CQCQ0T1Q 107

TYPESY NOTYPE = NOTYPE + 1 :(READLQOF)

COMNSY NOCCMN = NOCOMN + 1 :(READLCIP)

00000520 108
00000530 109
00000590 110
QCQLORS0 11])

EQUIVST NOEQU = NCEQU ¢ 1 :(READLOCP)

DIMST NODIM = NODIM + 1 :(READLOCP)

03000560 112
00000570 113
000C0580 114
000005<0 115

DATST NODAT = NODAT + 1 :(REACLOOP)

CALLST NOCALL = NOCALL + 1 :(READLOOP)

00000500 110
00000610 117
00000620 118
3€000630 119

IFST NOIF = NOIF + 1 :(READLOCP}

00000020 120
00000650 121
00000660 122

EXST NOEXE = NOEXE + 1 :({READLOOP) 153
STPST NOSTOP = NOSTOP ¢ 1 :(READLOOP) ig;
ELST NOELSE = NOELSE + 1 :(READLCOP) i;g
ENDST NOEND = NOEND + 1 :(READLOGOP) igg
ASGST NOASG =NOASG + 1 (i ALLOZP) :gg
NODOST NCDOS = NCDOOS + 1 :(READLQOP) ig;
NOUNST NOUNS = NCUNS + 1 :(READLCOP) igg
NOPROCST NOPROCS = NOFRICS + 1 :(READLQOP} iig
NOCYLST NOCYLS = NOCYLS + 1 :(READLCOP) i;g
NODOCST NODTS = NODCS + 1 :(READLOOP) i:;
NOCST NGC*~F = HOCASE + 1 :{READLCCP) i:;

44

NOWST NOWRT = NOWRYT ¢ 1 (READLOOP) 145
146

NGESY HOFMY = NOFMY » 1 :iPEADLQAD) 147
148

SUBST NCS3S = NOSBS + 1 :(READLCCP) 149
150

RTHSY NCRTNS = NORINS ¢ 1 :(READLOQP) 181
182

BLKST BLKSK = BLKSK + 1 :(READLOOP) 153
154

QUMY DOUNTK = DOUNYK +) :{RFARLOOP) 158
156

NAMLST NLK = NLK « 1} :{READLOOP)} 157
158

REWST REWK = OEWK ¢ 1 :(REAQLCCPY 159
140

READST REEDK = REEDK ¢ 1 :(READLOOP) 161
162

TOLABSY DLK = DLK ¢ 1 (READLOCP) 143
166

ENITST EXK = EXK + 1 <:(READLOO®) 165
166

CORMSYT DU = DR ¢ 1 S(PEADLCOP) 167
168

LABST LK = LK + 1 :(READLOOP) 169
170

XIT PRTYMIIC) 00000570 171
CUTFUT = 00003580 172
QUTRUT = 00000690 173
CUTPUT = 0COCO700 174
GJTFUT = “END-CF-JOB'" :(END) 020C0710 175
e0000720 176

INITMDE OQUTFUT = 00C03730 177
QUTPUT = 006000740 178
CUTFPUT = £0000750 179
CJTFUT = BUF 00000760 150
CUTFUT = 00000770 181
OUTFUT = 02000780 182

NOCCM = © 20200790 183
NOTYPE = 0 02002390 1584
NOCOMN = O C0000510 185
NJEQU = 0 00000820 186
NODIN = O 00000330 187
NOOAT = 0 0500€840 189
NCCALL = 0 80C00S850 189
NOIF = 0 00300860 190
NOENE = O 191
BISTCP = 2 192
NOELSE = 0 1e3
NOEND = O 184
MNJASS = 0 195
NCDOS = @ 1%
NOUNS = 0 197
WMPPCCS = 0 193
NOZYLS = O 190Q
NIZCS = 6 200
NITASE = 0 201

NCHAT 2 0 202
NOQFNMY = 0 203

NOSBS = 0%
NORTNS = 0 205
BLKSK = 206
DOUNTK = 0 207
NLK = 0 208
REWX = 0 209
REEDK = 210
DK = 0 adl
EXK = 0 212
DK = 0 213
X =0 214
NOUNREC = @ :IRETURN} 00000870 215
0000650 216
PRTMOD OCUTPUT = 00000890 217
CUTPUT = 00000900 218
CITPYT = Qeeo991e 219
QUTFUT = "NUMBER OF CCMIENT CARDS IS ... NOCOM 00000920 220
QUTPUT = “NUNBER OF TYPE CARDS IS..." NOTYPE 00000930 221
CUTPUT = "NUMBER OF CCMMON CARDS IS...'" NOCOMN 00003940 222
OLUTRUT = *'MUNMIER OF ECUIVALENCE CACNRS IS, .. NQEGQU 02090959 23
QUTFUT = "KUMIER OF DIMENSION CARDS IS ...'" NCDIM 00000500 224
QUTPUT = "NUMZER OF DATA CARDS IS ...' NCDAT 00000970 22
QUTPRUT = “NUMZER OF CALL STATEMENTS IS ..." NOCALL 00000980 220
QUTRUT = “NMIZER OF YF STATEMENTS IS ...' NOJF 00002999 227
CUTPUT = "NUN3ER OF EXECUTE STATEMENTS IS..." NOEXE 228
QUTFUT = “NUMBER OF STOCP STATEMENTS IS ... NOSTOP el
CUTPUT = "KUMBER OF ELSE STATEMENTS IS...'* NOELSE 230
QUTPUT = "NUMZER OF _END STATEMENTS JS...' NCOEND 231
CJTFRUT = "NUTZER OF ASSICNMINT STATEMENTS IS..." NOASS 232
OUTFUT = "NUMBER OF <DO FCR> STATEMENTS IS...' HODOS 233
QUTPUT = “NUMBER QF <UNDO> STATEMENTS IS..." NOUNS 234
OUTFUT = "NI™RER OF FroTEDURE STATEMENTS IS..." NOFPOCS 235
CUTFUT = "hUNSER OF <CYCLE> STATENENTS IS...' NOCYLS 236
CUTFUT = "NUMSER OF UNIECOGNIZED STATEMENTS IS...' NOUNREC 237
OUTPUT = "NUM3ER OF <D0 CASE> STATEMENTS IS...' NODCS 238
QUTRUT = “MUMDER OF <CASE> STATEMENTS IS...'' NOCASE 239
OUTPUT = "KUMEER OF WRITE STATEMENTS IS ...* NOWRT 240
QUTRUT = "NUMEER OF FORMAT STATEMENTS IS..." NOFMT 241
QUTPUT = "NUMBER OF <SUTPOUTINE> STATEMENTS IS..." NOSBS 242
QUTPUT = “NUMTER OF <RETURN> STATEMENTS IS..." NTITNS o3
OUTPUT = "“NUNZER OF BLOCK DATA STATEMENTS IS...' BLKSK 249
QUTPUT = “NUMBER OF <00 UNTIL> STATEMENTS IS...* DOUNTK 245
CUTPUT = “NUMBER OF NAMELIST STATEMENTS IS..." NLK 266
QUTPUT = “NUMSER OF REWNIND STATEMENTS IS...' REKWK 247
OQUTFUT = “NUMOZR OF READ STATEMENTS IS...'' REEDK 248
QUTFUT = "NUMBER OF <DO LABEL> STATEMENTS IS..." DLK 69
OUTPUT = “NUM3ER OF EXIT STATENENTS IS..." EXK 250
CUTPUT = “NUMIER OF LABEL STATEMENTS IS..." LK 251
CUTFJT = “NU/CER OF <DO WHILE> STATEMENTS IS...'" DX 252
QUTPUT = *(RETURN) 00001000 253
END 00001010 5%

NO ERRORS DETECTYED IN

SOURCE FROGRAM

: *unndn FUNCTION BASRIT wmnnx

00000013

OF COMMENT CARDS IS ...617
OF TYFE CARDS 1S...493

OF CO:!.MCN CARDS IS...3%

OF EQUIVALENCE CARCS IS...36
OF DIMENSICN CARDS IS ...4
CF DAYA CARDS IS ...4

OF Call STATEMENTS IS ...o7
OF IF STATEMENTS IS ...107

OF STOP STATEMEMYS IS ...5

? OF ELSE STATEMENTS IS...35

OF EN3 STATEMENTS IS...1l15

OF ASSIGNMENT STATEMENTS IS...0
? OF <D0 FOR> STATEMENTS IS ..17

OF <UNCO> STATENMENTS IS...C25

OF FROCEDURE STATEMENTS IS...19
<CYCLE> STATEMENTS 1S...2
UNRECOGMIZED STATEMENTS 1S...0

R
R
R
R
R
R
R
R
R OF EXECUTE STATEMENTS IS...45
Q
R
R
R
k]
R
o]
R
2

<CO CASE> STATEI'ENTS IS...3
<CASE> STATEMERTS IS...lo
WRITE STATEMENTS IS ...1é
FCRIMAT STATEMENTS IS...16

<SUTROJTINE> STATETMENTS IS...2
<PETURN> STATEMENTS IS5...2
BLOCK DATA STATEMENTS 1S...0
<00 UNTIL> STATEMENTS IS...0

NIMELIST STATENENTS 1S...0
RERIND STATEMENTYS IS...0

e READ STATEMENTS IS...0
MM3IER OF <GB0 LAZEL> STATEMENTS IS...0

wWHILR OF ENIT STATEMENTS 1S...331
WUNTER OF LABEL STATEMENTS IS...0
WUMBER OF <DC WHILE> STATEMENTS I1S...0

- *uenuw FUNCTION FEREIT sedenx

00000010

NUMBER OF COMMENT CARDS IS ...957
NUMBER OF TYPE CaRDS IS...57
SUMCER OF CCOIMON CARDS IS.. 29

BN EQUIVALENCE CARDS IS...45
NUMCER OF DIMENSICN CARDS IS ...4
{UMZER OF DATA CAFUS IS ...5

NUMSER OF CALL STATEMENTS IS ...76

NUMBER OF IF STATEMENTS IS ...109
NUMBER OF EXECUTE STATEMENTS IS...80
NUMGER OF STOP STATENMENTS IS ...5
MURED QF FLSE SYATEMENTS IS...31

NUNBER OF END STATEMERTS 1S...146
NUIHSER OF ASSIGNMENT STATEMENTS IS...0
NUMBER OF <D0 FOR> STATEMENTS 1S5...34
NUMRER OF <UMNDO> STATEMENTS 1S...14

NUNSER OF FRICEDURE STATEMENTS IS...33
NULBER OF <CYCLE> STATEMENTS IS...0
NUNSER OF UNRECCGMIZED STATEMENTS 1S...0
VM3ER CF <CO CASE> STATEMENTS 1S...S5

WNIER OF <CASE> STATEMINTS IS...21
NUMBER OF KWRITE STATERMEMTS IS ...21
NUNMBER OF FORMAT STATEMENTS 1S...21
SUMRER QF SSUSPQUTINE> STATEMENTS I1S...4

NUNBER OF <RETUPN> STATEMENTS 1S...5
WMMSER OF BLOCK DATA STATEMENTS IS5...0
NUNMBER OF <D0 UNTIL> STATEMENTS IS...0
NUNIIER OF NAMELIST STATENMENTS IS...0

w3ER OF REMIND STATEMEINTS IS...0
NUNCER OF READ STATEMENTS IS...0
NUMBER QF <BO LABEL> STATEMENTS IS...0
WHMREQ OF EXIT STATEMENTS IS...4¢0

WNZER OF LABEL STATEMENTS IS...0
NUMRER OF <D0 WHILE> STATEMENTS IS...0

3 #unud FUNCTION GCDOIT wénus 00001200

NUNBER OF COMMENT CARDS IS ...652
NUMSER OF TYPE CARDS IS...40

NUMBER OF COMMON CARDS IS...32
WUMBER OF EQUIVALENCE CARDS IS5...13

JUNMSER OF DINENSION CARDS IS ...4
{UMSER OF DATA CARDS IS ...15
WMJIER OF CALL STATEMENTS IS ...58
SUI'BER OF IF STATEMENTS IS ...148

WJNBER OF EXECUTE STATEMENTS 1S...87
NUMBER OF STOP STATEMENTS IS ...8
NUMBER OF ELSE STATEMENTS IS...71
SUMCER OF END STATEMENTS 1S...205

NUNEER OF ASSIGMNMENT STATENENTS IS...0
NUNSER OF <O FOR> STATEMENTS IS...39
JUMBER OF <UNDO> STATEMENTS IS...22

NUMRER OF PRCCEDUFE STATEMENTS IS...39

NUNSER OF <CYCLE> STATEMeHTS 1S...1
NUMBER OF UNRECOGNIZED STATEMENTS IS...0
NUNBIR OF <DO CASE> ST'TEMENTS IS...2
NUMBER OF <CASE> S7. 7. 7.TS IS...11

{UNOER CF WRITE STA NTS§ IS ...119
NUMIER OF FCORMAT STAVcMENTS 1S5...119
MUMBER OF <SUSROUTINE> STATEMENTS IS...4
NUNSER CF «RETUIN> STATEMENTS IS...5

NUMBER OF
N'IMRER OF

COMMENT CARDS 1S ...3679
TYPE CoRPS IS,.,382

“UMZER CF
NUMBER OF
NUMSER OF

COI™MCN CARDS IS...168
EQUIVALENCE CARDS IS...30
DIMENSION CARDS IS ...9
DATS CARRS IS ...00

USRS
NUHSE
SOMBER OF
Qe OF

CALL STATEMINTS IS5 ...182
IF STATEMENTS 1S ...304
EXECUTE STATEMENTS IS...182
STOP STATEMENYS IS ...8

SUMLER OF
. R OF
NUMEER OF
WUMETER COF

ELSE STATEMENTS IS...102
END STATEMENTS 1S5...338
ASSIGNMENT STATEMENTS IS...0
<D FCP> STYATEMENTS IS...82

NJEDER OF
NUNSER OF
WHSER OF
NJMRER OF

sUNDO> STATIMENTS IS...35
PROCEJDURE STATEMENTS IS...64
<CYCLE> STATEMENTS IS...Q
UNTECOONICED STATEMENTS I1S...0

NGVDER OF
HUNMIER OF

<CO CASE> STATEMENTS IS.,.7
<CASE> STATEMINTS IS...61

WRITE STATEMENTS IS ...218
FOTMAT STATEMENTS IS...193

NUMSER OF
WNZIR CF
"MIER OF

<SUCRQUTINE> STATEMEINTS IS...9
<RETURN> STATEMENTS IS...10
BLCCK DATA STATEMENTS IS...1
<CO UNTILS STATEMENTS 1S...0

SCURER OF
NWMBER OF
WHBIR OF

NUM3RER OF

NAMELIST STATEMENTS IS...0
REWIND STATENENTS IS...0
READ STATEMENTS IS...0

<00 LABEL> STATEMENTS IS...0

NUN3ER OF
WMEER OF
NUNBIR OF

ENIT STATEMENTS IS...1009
LADEL STATEMENTS IS...0
<D0 WHILE> STATEMENTS IS...0

iy

=

3-0F-JC3

NUMBER OF BLOCK DATA STATEMENTS IS...1
WMBER OF <DO UNTIL> STATEMENTS 1S...0
NUM3ER OF NAMELIST STATEMENTS IS...0
MUIER QF REWIND STATENENTS IS,,.0

{UMBER OF READ STATEHENTS 1S...0
NUMBER OF <DO LABEL> STATEMENTS IS...0
JUMBER OF EXIT STATEMENTS IS...563
SUMRER OF LASEL STATEMENTS XS...0

ICN3ER OF <DO WHILE> STATEMENTS IS...0

s #ukud FUNCTION STUFIT s

00000010

NUMBER OF COMMENT CARDS IS ...452

WMSER OF TYPE CARDS 1S...26
NUMBER OF CO/MON CARDS IS...3%
NUMBER OF EQUIVALENCE CARDS 1S...8
MMBER OF DIMENSICN CARDS IS ...2

NUNBER OF DATA CARDS IS ...17

NUMBER OF CALL STATEMENTS IS ...Z8
NUMSER OF IF STATEMENTS IS ...143
NUMBER OF EXECUTE STATEMEINTS IS...102

NUNSER OF STOP STATEMENTS IS ...6
NUMEBER OF ELSE STATEMENTS IS...58
NUMBER OF END STATEMENTS 1S...197
SUMTER OF ASSIGNMENT STATEMENTS IS...0

NUNSER OF <DO FOR> STATEMENTS 1S...35
NUMBER OF <UNDO> STATEMENTS IS...28
NUMSER OF FROCEDURE STATEMENTS IS...30
SUHMBER OF <CYCLE> STATEMENTS I1S...0

NUNSER OF UNRECCEGMIZED STATEMENTS 1S...0
NUMBER OF <DO CASE> STATEMENTS I5...10
NUMBER OF <CASE> STATEMENTS IS...S59
YUMBER OF WRITE STATEMENTS IS ...36

NUNBER OF FORMAT STATEMENTS 17...35
NUMBER OF <SUSROUTINE> STATEMENTS 1S5...3
NUMBER OF <RETURN> STATEMENTS IS...5
NUMSER OF BLCCK DATA STATEMENTS IS...0

SCTSER OF <DO UIITIL> STATEMENTS IS...¢
NUMBER OF NAMELIST STATEMENTS IS...1
NUMBER OF REWIND STATEMENTS IS...2
NUMBER OF READ STATEMENTS 1S...3

NUMBER OF <DO LABEL> STATEHENTS IS...2
NUMBER OF EXIT STATEHENTS 1S5...340
NUMBER OF LABEL STATEMEN(S IS...2
NUNBER _OF <DO WHILE> STATEMENTS IS...0

c #unni FUNCTION WRITON #xmux

00000015

APPENDIX C

DATA ACOQUISITION FORMS

COMPUTER PROGRAM RUN ANALYSIS REPORT
INSTRUCTIONS '

To be jilled out by programming librarian or respornsible progra=mer
after each computer mm. If the rwon was wnsucessful (SYNTAX errors,
abort, calculaiion error, loop, etc.), ihe supplemental form
COMPUTER VROGRAM FAILURE ANALYSIS RIPORT should also be complete.
Tnis form will yield error statistic data and computer run time cata.

Use program rmemonic.

This time is start time of computer execution from the computer
printout. .

If answer is no, complete COMPUTER PROGRAM FAILURE ANALYSIS REPORT.

This can be gotten from.the cosputer printout.
Check the apprcpriate box.
Check the zppropriate box.
Crneck the appropriate box.

Check the approprizte box.

«wacliiNG' PAGE BLANK NOJ §

[P

¢
R)
[N S A
ven

SYSTEM A DATE

COMPUTER PROGRAM RUN ANALYSIS REPORT.
1. Computer Program Component 1D

2. Run Date: Day Mon Yr Hr] Min

—— —— — — — — — ——

3. Successful Run?

4. CPU Time: __ Min e . Sec
5. Category of Work:
a. Program D2velopment (3

b. Program Modification:

(1) Irplementation of Additional Requirement 3
(2) Implementation of Hardware Change 3
(3) Memory/Time Optimization Enhancement (3
{(4) Error Correction J
(5) Design Modification 3
c. Program Conversion . 03
d. Cther 3

6. CPCi/CPC Siatus

a. CPC Test and Eval [J «c. Full Integ. Test 7
b. Tartial Integ. Test [J d. Production Program []
y e. Other £J

7. Frogram Activity

a. Compilation (J <. Run with no compile (]

b. Compile and run (] 4. Other {3
§. Number of Source 5tatements Changed/D2leted Inserted

a. None [J e. 31-40 (] i. 101-150 0 (2

b. 1-10 [3J f. 41-50 [3 j. 151-200 L]

c. 11-20 (3 g. 51-7s (] k. Over 200 [J

d. 21-30 (3 h. 76-100 (3

Contact

COAPUTER PROGRAM FATLURE ANALYSIS REPORI
INSTRUCTIONS

Jo be filled out by the rerporaidle develencr for cazch wisucocsaful —m. The
Jailwre informaticn should be cvailabic om the progrem printout or from the
coputer opercior. The crror dsia can be derived frum an cnclysis of the
program sutput. (It is possible that a foilice con be coused by more tham cne

crror, list them all).

Use program rmemonic. .

This time is start time of copuler cxecution rom the compuler printout.

Check box which most ncarly describes the failure indicatibn., 1f other is

checled, briefly describe failure, -

The count wider the ertor category r-ans number of errors not nuber of ertonrous
statcrents.

A. Eaples of CO-PUTATIONAL ERRORS include: (1) Incorrect operand in

equation, (2) Incorvect use of parenthesis, (3) Sign coavention ervor

{(4) Units or data conversion ervor, (5) Computation produces an over/undsr
flow, (6) Incorrect eguation used, (7) Precision lest due 10 mined rode,
{8) Missing corpuiations, (9) Roanding or tnumcation error and loop.

Examples of LOGIC ERRORS include: (1) Incotrect opesrand in logical expres-
sion {2) logic activities out of seguence, (3) ¥rong variadle baing
checled, (4) Missing lopic or condition tests, (5) Too ramy/ioo fem siate-
r.=nts in Joop, (6) loop iteraied incorrect number of iimes (incluling
endless Joop). :

Exarples of DATA INAUT ERRORS include: (1) Tmslid imput read from comect
data file, (7] Input tead is;om incorrect data file, (3) Incorrect input
format, (4) Incorvect forrat siatement referenced, (5) EOF encoumtered
prematurely, (6) EOF missing.

Exarples of DATA BANDLING ERRORS include: (1) Ieza {file not re~ound bhefcre
reading, (2) Deia i1mitiaiization not dons, (3) Dawa initislizatlion done
irproperly, (4) Variable used as & flag or index not sei properly,

(5) Variabie referred to by wrong name, (6) Veriable Type is Intorvect,

(?) Daws paciing/urpacking ervor, (8) Sort error, (8) Subucripiing ervor.

Exarples of DATA OUTPUT SRRORS include: (1) Data writien on wrong file,
(2) Inta wTitlten using wTong :oTmat sistcment, (3) Tata wTitien 2n the
wrong forrat, (4) Mmta wrizten with wtong carriage conirol. (5) Incelete
or cissing output, (6) Output field size 10 small, (7) lLine coumx and
Fage eject problems.

Exarples of INTERFACTZ ERRORS include: (1) Wrong sutroutine called,
(2) Call to suBrouline ~ade in wrong place, (3) S.Eroutine argunchles notl
comsistent in Type, units, order, etc. (4) Subroutine called is nonexaxient.

Exatples of ASRAY PROCESSING ERACRS include: (1) Asrray not properly]
dir=nsioned, (2) ATTay rciercenced out of bounds, (3) Array being Telerencea
at incorrect location, {¢) Array pointers not increnented prepe:ly.

Examples of DATA BEASE EFRORS include: (1) Data should have bee: injtial-
i1ed in daia Basc But wasn't, (2) Dota initialized to incorTect value in
data base, (5) Data tase units are incorTect.

Exarples of OFZIRATION ERRRCS include: (1) Operating systen erTor,
(2) Far1dware error, (7) Cperator e:7or, (&) Tes. execution ervor.

Exaples of PROGIAM EXECUTION ERRODS includz: (1) Time linit exceeded,
(2) Core storage 1imiL etwcecaed, (5) (Uiput line linit excceded,
{¢) Corpilation ervor.

(1) User ramal ervor,(2) Inter-

Exaples of NOZSENTATION :
T, [4) Rezu'verments speC erTor.

face spec error, (5] les

2riefNy descridbe the er1i.(s).

SYST™

COMPUTER PROGRAM FATLURE ANALYSIS REPORT

1. Corputer FProgram Corponent 1D
Lay Mon

2. Run Date:

DATE

3. Severity of Failure

A.
B.
c.
D.

E.

Caused Complete System to Crash

Caused A Depenéent Job to Fail

local Job Failure Only
Real Time Failure

Cirer

4. Error Cetegory

A.

lee]

o om om0

-t
»

L S

Conputational Error
logic Error

Deta Input Error

Data Handling Error
Data Output Error
Interface Error

Array Processing Error
zta Base Lrror

Cperation Error
Program Execution Error

Documentiation Error

Cther

C-4

3l
]
L3
2
03

]
0]
(3
L]
{3
£l
(]
CJ

3

£l
(]
€3

Contact

UG PAGE BLANK NOT Fipicl:
APPENDIX D
BIBLIOGRAPHY

Barlow, Richard and Scheuer, Ernest, "Reliability Growth During
a Development Testing Program,” Technometrics, Feb 1966, Vol.
8, Ne. 1, p. 53.

Abstract: The problem of estimating reliability of a
system undergoing development testing is examined. Tt is
assumed that the test program is conducted in K stages and that
3imilar items are tested within each stage. 1In addition, it is
.ssumed that the probability of an inherent failure, qg,
remains constant throughout the test program while the
probability of an assignable cause failure in the i-th stage,
qijr does not increase with i. The number of inherent
failures, of zssignable cause failures, and of successss is
recorded 1n each stage. Maximum likelihood estimates of q,,
q;{i = 1, 2, **-, K) and a conservative confidence bound
for the reliability in the K-th stage are obtained. Numerical
examples to illustrate the methods are given.

Belady, L.A.; Lehman, N. M.; "An Introduction to Growth
Dynamics", Statistical Computer Performance Evaluation,
Freiberger (ed.) Academic Press, New York, 1972, 503-511.

Belady, L. A.; Lehman, M. M.: "On the Macro-Dynamics of
Programming and Other Systems", in preparation Fall 1971,
disposition unknown on 27 March 1973.

Belady, L. A.: Lehman, M. M.: "Programming Systems Growth
Dynamics", IBM Research Division RC3546, September 1971.

Berkovitz, Shimshon: "The Calculation of Availability of
Systems with Arbitrary Structure and Success Criteria”. MTR
2314, The MITRE Corporation, Bedford, Massachusetts, 17 May
1972.

Abstract: A recursive scheme for computing system
availability from component element availabilities is developed
and displaye?. It requires only the knowledge of all minimal
sets of components needed for successtul system operation. It
does not rely on any series, parallel or bridge structure but
is applicable to the most general redundant systems. The
scheme can be truncated at any level of recursion to yield good
approximations. Included is a discussion of how the level of
truncation depends on the number of system components, their
availabilities and the desired accuracy.

Boehm, Barry W.: "Software and Its Impact: A Quantitative
Assessment", Datamation, May, 1973, 48-59.

BPrown, J. R. and Lipow, M., "Testing for Software Reliability,"
Proceedings, 1975 International Conference on Reliable
Software, IEEE Catalog No. 75 CH0940-7 CSR.

Abstract: This paper presents a formulation of a
novel methodology for evaluation of testing in support of
operational reliability assessment and prediction. The
methodology features an incremental evaluation of the
representativeness of a set of development and validation test
cases together with definition of additional test cases to
enhance those qualities. If test cases are derived in typical
fashion (i.e., to find and remove bugs, to investigate software
per formance under off-nominal conditions, to exercise
structural elements and functional capabilities of the
software, and to demonstrate satisfaction of software
requirements), then the complete set of test cases is not
necessarily representative of anticipated operational usage.
The paper reports on initial research into formulation of valid
measures of testing representativeness.

Buckley, P. J., "Software Testing - A Report From the Field, "
Proc. 1973 IEBEE Symposium Computer Software Reliability,
Brooklyn Polytechnic Institute, April 1973, pp 102-106.

Crhandy, K. M.; Ramamoorthy, C. V.; Cowan, A.: "A Framework for
Hardware-Software Tradeoffs in the Design of Fault-Tolerant
Computers", AFIPS Conference Proceedings, Volume 41, Part T,
1972, 53-63.

Abstract: Our approach to reliability rests on a
framework of four indices called the Hardware Reliability
Efficiency index (HRE), the Software Reliability Efficiency
index (SRE), the Real-Time Criticality index (RTC) of a system,
and the inclusion factor. For a given method of achieving
reliability HRE and 3RE are measures of the increase in
reliability of the system per unit of expenditure. For the
same amount of expenditure, a method with a high HRE (or SRE)
gives better reliability than a method with low HRE (or SRE).
In this paper we shall discuss ways of computing the fficiency
indices for sever~l different reliability methods. The
real-time criticality index is a measure of the penalty
incurred for a late completion of the system mission. Thus an
air-traffic control system would have a high RTC compared to
other systems. The inclusion factor (defined later) is a
dimensionless number; if the inclusion factor for a given
method is less than one, then that method should not be used in
the system. The inclusion factor is a function of the method
being considered and of system objectives. Thus a given
technique may be opti.ally included in the design of one system
and excluded from another.

Coutinho, John de S.: "Software Reliability Growth", Record,
IEEE Symposium on Computer Software Reliability, 1973.

Craig, G. R., Hetrick W. L., Lipow, M., Thayer, T. A. et al,
Software Reliability Study", TRW Systems Group, Interim
Technical Report, RADC-TR-74-250, Oct 74 (Under RADC Contract
F30602-74-C-0036, Software Reliability Study). (AD787784/8GI)

Abstract: The study of software error types,
techniques for locating them, and recommendations for
improvement of reliability are discussed. Interim results from
a study of errors encountered in three large software packages
are presented. Data collection and analysis schemes are
summarized for subject data sets; and plans for data collection
on a fourth software project are outlined. Finally, a survey
of present software reliability models and a summary of TRW
work in this area are given.

Davenport, Wilbur B., Jr.: Probability and Random Processes,
McGraw-Hill Book Company, New York, 1970.

"Dept. of Defense, Military Standardization
Handbook--Reliability Prediction of Electronic Equipment,
MIL-HDBK-217B (Sept 1974).

Dickson, J. C., Hesse, J. L., Kientz, A. C., and Shooman, M.L.,
Quantitative Analysis of Software Reliability."

Abstract: Although reliability engineering has
matured as a discipline in the past decade under the pressure
of increasing user requirements, little formal thought has been
given to a systems reliability approach encompassing both
hardware and software aspects. The preponderance of existing
literature has concentrated on formal verification techniques
for existing firmware or software, leaving the reliability
analysis realm essentially untouched. Since many applications
such as space programs, airline reservation systems, and
military weapon systems require high reliability assurance
prior to release to the user, the purpose of this paper is to
suggest a methodology suitable for use in system reliability
studies. The prediction model which is developed is based on
error correction rates, and is applied to the time profile of
these rates for several classes of data.

Proceedings, 1972 Annual Reliability and Maintainability
Symposium, IEEE Catalog No. 72 CH0577-7 R, pp. 148-157.

Ellingson, O. E. "Computer Program and Change Control," Proc.
1973 IEEE Symposium Computer Software Reliability, Brooklyn
Polytechnic Institute, April 1973, pp. 82-89.

Endres, A. "An Analysis of Errors and Their Causes in System
Programs," Proceedings, 1975 International Conferencec on
Reliable Software, IEEE Catalog No. 75 CH0940-7CSR.

Feller, W.: An Introduction to Probability Theory and
Applications, Wiley, New York, 1957.

Floyd, R. W., "Assigning Meanings to Programs," Proc. Symp. in
App. Math., Vol. 19, American Math Society, Providence, R.I.,
1967' pp. 19'—32.

Funami, Y. and Halstead, M.H., "A Software Physics Analysis of
Akiyama's Debugging Data," Proceedings of the MRI Symposium on
Computer Software Engineering, Polytechnic Institute of New
York (April 1976).

Abstract: It is probably obvious that B, the number
of errors that a programmer might make in implementing any
given algorithm in any given programming language, depends upon
the total number of opportunities for making an error. Until
recently, it has also been equally obvious that there was
little reason to expect that such a basic quantity even
existed, and even less reason to suspect that it could be
measured. Recent discoveries in an area of Natural Science
called Algorithm Dynamics or Software Physics (6, 8, 9, 10,
14) , however, include a simple hypcthesis which relates a set
of measurable parameters of a program to the total number of
elementary mental discriminations required to generate that
program. A few experiments on Programmer Productivity (5, 7,
11, 13) have suggested that the hypothesis successfully
accounts for the combined effects of program volume and program
difficulty.

None of the reported studies have specifically
addressed the application to program bugs. Yet if the
hypothesis is in reasonable agreement with reality it yields
the total number of elementary mental discriminations required
in writing a program, and this must also be the total number of
possibilities for making an erroneous discrimination. 1In the
following sections we will reproduce the hypothesis and apply
it to an independent set of data presented te the Lubjana
Conference by Akiyama in 1971.

Girard, E. and Rault, J.D., "A Programming Technique for
Software Reliability," ®roc. 1973 IEEE Symp. Computer Software
Reliability, Brooklyn Poly. Inst., April 1973, pp. 44-50.

Abstract: The overall feature of software products
and traditional programming techniques are first reviewed.
Then we propose and describe a two~step programming technique
which, among other advantages, allows one to enhance software
testing and reliability., It is shown how this technique can be
included in two different program testing schemes
(probabilistic and deterministic) and used to assess
quantitatively program reliability.

Gnedenko, B. V., Belyayev Y. K., and Sclovyev, A. D.,

Mathematical Methods of Reliability Theory, \cademic Press, New
York, 1969.

Goodenough, J. B., and Gerhart, S.L., "Toward a Theory of Test
Data Selection," Proceedings, 1975 International Conference
on,Reliable Software, IEEE Catalog No. 75 CH0940-7CSR.

Abstract: This paper examines the theoretical and
practical role of testing in software development. We prove a
fundamental theorem showing that properly structured tests are
capable of demonstrating the absence of errors in a program.
The theorem's proof hinges on our definition of test
reliability and validity, but its practical utility hinges on
being able to show when a test is actually reliable. We
explain what makes tests unreliable (for example, we show by
example why testing all program statements, predicates, or
paths is not usually sufficient to insure test reliability),
and we outline a possible approach to developing reliable
tests. We also show how the analysis required to define
reliable tests can help in checking a program's design and
specifications as well as in preventing and detecting
implementation errors.

Green, T. F., and Schneidewind, Howard, G. T., and Pariseau, R.
J. "Program Structure Complexity and Error Characteristics,"”
Proceedings of the Symposium on Computer Software Engineering
XXIV, MRI Symposia Series, Polytechnic Press, Brooklyn, NY
(1976).

The ability to detech and correct errors in a computer
program is governed to a great extent by the structure of the
program. Structure is important in two ways: (1) errors are
more difficult to find in complex structures; and (2) more
errors are generated initially during programming with complex
structures. A method of characterizing structure is to
represent the program logic in the form of 2z directed graph,
where nodes and area represent decision instructions and
straight line coding, respectively. This representation can be
analyzed in terms of the following measures; probability of
reaching an arc with an input; test coverage achieved with N
inputs; numbers of nodes and ar~zs; and ration of actual to
maximum number of arcs. Since program structure is most
meaningful when related to the distribution of possible errors
in the program, the ability to detect errors in various
structures is studied. This is accomplished by employing an
error detection simulation model. The relationships which are
analyzed are error detection and test coverage as a function of
program structure and number of inputs. These functions would
be used in the design of software to avoid structure which are
difficult to test and during testing for allocating resources

to tests in accordance with structure and error detection
characteristics.

As expected, it was found that the ability to detect
errors decreases with increasing complexity. This was caused
by program coverage decreasing with increasing complexity. An
interesting aspect of the results is the asymptotic nature of
the functions, which demonstrates the difficulty of finding
additional errors after a critical value of coverage has been
achieved, where the critical value of coverage is relatively
low in complex structures.

Haines, Andrew L.: "Some Contributions to the Theory of
Restricted Classes of Distributions with Applications to
Reliability", M73-35, The MITRE Corporation, Washington
QOperations, May 1973.

Haney, F. M.: "Module Connection Analysis - A Tool for
Scheduling Software Debugging Activities™, AFIPS Conference
Proceedings, Volume 41, Part T, 1972, 173-179.

Hecht, H., Measurement, Estimation, and Prediction of Software
Reliability, NASA CR-145135, National Aeronautics and Space
Administration, Washington, DC (January 1977). Also in
Software Engineering Techniques, Infotech International Ltd.,
Maindenhead, Berkshire, England, (1977), Vol. 2, p. 209-244.

IEEE: Record, 1973 IEEE Symposium on Computer Software
Reliability, New York City, April 30 - May 2 1973, No. 73 CHO
0741-9 CSR.

Itoh, D., and Izutani, T., "FADEBUG-I, a New Tool for Program

Debugging,™” Record 1973 IEEE Symposium on Computer Software
Reliability, IEEE C-talog No. ’i§ cE H0741-9 CSR.

Jaynes, Edwin T.: "Prior Probabilities", IEEE Trans. or
Systems Science and Cybernetics, Vol. S$SC~4, No. 3, September,
1968, 227-241.

Abstract: 1In decision theory, mathematical analysis
shows that once the sampling distribution, loss function, and
sample are specifi:d, the only remaining basis for a choice
among different admissible decisions lies in the prior
probabilities. Therefore, the logical foundations of decision
theory cannot be put in fully satisfactory form until the old
problem of arbitrariness (sometimes called "subjectiveness") in
assigning prior probabilities is resolved.

The principle of maximum entropy represents one step
in this direction., 1Its use is illustrated, and a
correspondence property between maximum-entropy probabilities
and frequencies is demonstrated. The consistency of this

principle with the principles of conventional "“direct
probability” analysis is illustrated by showing that many known
results may be derived by either method. However, an ambiguity
remains in setting up a prior on a continuous parameter space
because the results lack invariance under a change of
parameters; thus a further principle is needed.

It is shown that in many problems, including some of
the most important in practice, this ambiguity can be removed
by applying methods of group theortetical reasoning which have
long been used in theoretetical physics. By finding the group
of transformations on the parameter space which convert the
problem into an equivalent one, a basic desideratum of
consistency can be stated in the form of functional equations
which impose conditions on, and in some cases fully determine,
an "invariant measure" on the parameter space. The method is
illustrated for the case of locetion and scale parameters, rate
constants, and in Bernoulli trials with unknown probability of
success.

In realistic problems, both the transformation group
analysis and the principle of maximum entropy are needed to
determine the prior. The distributions thus found are uniquely
determined by the prior information, independently of the
choice of parameters. 1In a certain class of problems,
therefore, the prior distributions may now be claimed to be
fully as "objective™ as the sampling distributions.

Jelinski, 2.: Moranda, P.: "Applications of a
Probability-Based Model To a Code Experiment"”, Record, IEEE
Symposium on Computer Software Reliability, 1973, 78-80.

Jelinski, 2.: Moranda, P.: "Software Reliability Research",
Statistical Computer Performance Evaluation, Freiberger (E4.),
Academic Press, New York, 1972.

Abstract: Software reliability study was initiated by
Advanced Information Systems subdivision of McDonnell Douglas
Astronautics Company, Huntington Beach, California, to conduct
research into the nature of the software reliability problem
including definitions, contributing factors and means for
control.

Discrepancy reports which originated during the
development of two large-scale real-time systems form two
separate primary data sources for the reliability study. A
mathematical model, descriptively entitled the
De-Eutrophication Process, was d:zveloped to describe the time
pattern of the occurrence of discrepancies (errors). This
model has been employed to estimate the initial (or residual)
error content in a software package as well as to estim=te the
time between discrepancies at any phase of its development.
Means ot ‘'redicting mission success cn the basis of errors
which occur during testing are described.

Problems in categorizing software anomalies are
described and the special area of the genesis of discrepancies
during the integration of modules is discussed. Management
techniques which should reduce the number of software anomalies
are described.

Jelinski, Z.; Moranda, P.: "Applications of a
Probability-Based Model to a Code Reading Experiment", Record,
IEEE Symposium on Computer Software Reliability, 1973.

Johnson, J. P., Software Reliability Measurement Study,
SAMSO~TR-75-279, Aerospace Corporation, El Segunda, CA (8
December 1975).

Abstract: The report contains plans for a complete
software reliability measurement program using both manual and
automatic data entry. The program is to be run in conjunction
with SAMTEC at Vandenberg AFB in an effort to establish
measurement and evaluation criteria for the advanced systematic
techniques for reliable operational software (ASTROS))
proiect. An integral part of that project is the
implementation and evaluation of structured programming
techniques.

Included in the report are all forms necessary to
describe the software development environment, the hierarchy
and size of programming modules, and to capture any significant
events that will affect programming and test while they are in
progress. Forms and instructions for their use for manual data
collections are included, as are descriptions of items that
could be collected automatically.

Keezer E. I., "Practical Experiences in Establishing Software
Quality Assurance," Proc. 1973 IEEE Symp. Computer Software
Reliability, Brooklyn Poly. Inst., April 1973, pp. 132-135,

King, J. C., A Program Verifier, Ph.D. Thesis, Carnegie-Mellon
University, Pittsburgh, 1969,

Abstract: This research is a first step toward
developing a “verifying compiler."™ Such a compiler, as well as
doing the standard translation of a program to a machine
executable form, attempts to prove that the program is
correct. 1In order to do this a program must be annotated with
propositions in a mathematical notation which define the
"correct: relations among the program variables. The verifying
compiler then checks for consistency between the program and
its propositions.

The thesis presents the theoretical basis of the
method and then describes a prototype verifier in detail. This
verifier, running on an IBM 300, operates on programs written
in a simple programming language for integer arithmetic. Many
programs have be. » autcmatically verified by this program.

These include a simple sort program, a program which examines a
number for the property 'prime,' and a rather subtle program
which raises an integer to an integeral power.

The formal analysis of a program produces
"verification conditions: which must be proven to be theorems
over integers. The verifier proves these theorems by using
powerful formula simplification routines and specialized
techniques for integer expressions. Ideas for improving this
verifier and for building one which will operate on a more
complicated programming language are presented.

Knuth, Donald E.: "An Empirical Study of FORTRAN Programs",
CSD Report CS-186, Stanford University, 1970.

Abstract: A sample of programs, written in FORTRAN by
a wide variety of people for a wide variety of applicacions,
was chosen "at random”™ in an attempt to discover quantitatively
"what programmers really do." Statistical results of this
survey are presented here, together with some of their apparent
implications for future work in compiler design. The principal
conclusion which may be drawn is the importance of a program
"profile,"” namely a table of frequency counts which record how
often each statement is performed in a typical run; there are
strong indications that profile-keeping should become a
standard practice in all computer systems, for casual users as
well as system programmers. This paper is the report of a
three month study undertaken by the author and about a dozen
students and representatives of the software industry during
the summer 1970. It is hoped that a reader who studies this
report will obtain a fairly clear conception of how FORTRAN is
being used, and what compilers can do abhout it.

LaPadula, Leonard J., "Engineering of Quality Software Systems,
Vol VIII - Software Reliability Modeling and Measurement
Techniques”, MITRE Corp., RADC~TR-74-325, Vol VIII, Final
Technical Report (Jan 1 - Jun 30, 1973), Jan 1975 (Under RADC
contract F19628-C-73-0001, Software Reliability and
Timeliness). (AD A007773).

Abstract: This report presents an overview of the
technological background commor. to the six tasks of proje:t
522A, a part of MITRE Project 5220, The Advanced Systems
Technology Program, under the direction of the Rome Air
Development Center, United States Air Force. Besides
discussing general background, this voiume provides an
introduction to each of the other seven volumes of the entire
report.

LaPadula, L. J.; Clapp, J. A.: Engineering of Quality Software

Systems", MTR-2648 Volume I, The MITRE Corporation, Bedford,
Massachusetts, June 1973.

D-9

Lipow, M. Estimation of Software Package Residual Errors,
TRW-SS-72-09, TRW Systems Group, Redondo Beach, CA (Nov 1972).

Lipow, M., "Maximum Likelihood Estimation of Parameters of a
Software Time-To-Failure Distribution”, TR%W Systems Group, TRW
Report No. 2260.1.9-73D-15(Rev 1), Jun 1973.

Lipow, M., "Some Variations of a Model for Software
Time-To-Failure", TRW Systems Group, Correspondence
ML-74-2260.1.9-21, Aug 1974.

Liskov, B. H.: "Guidelines for the Design and Implementation
of Reliable Software Systems", MTR-2345, The MITRE Corporation,
Bedford, Massachusetts, 14 April 1972,

Abstract: This document describes experimental
guidelines governing the production of reliable software
systems. Both programming and management guidelines are
proposed. The programming guidelines are intended to enable
programmers to cope with a complex system effectively. The
management guidelines describe an organization of personnel
intended to enhance the effect of the programming guidelines.

Littlewood, B. and Verrall, J. L. "A Bayesian Reliability
Growth Model for Computer Software," Journal of the Rovyal
Statistical Society, Series C, Applied Statistics, 1§7§.

Lloyd D. and Lipow, H. Reliability: Management Methods, and
Mathematics, Prentice-Hall, Bnglewood Cliffs, New Jersey, 1964.

London, R. L. "Certification of the Algorithm Treesort," Comm.
ACM. Vol. 13, No. 6, 1970, pp. 371-373.

Mac Williams, W., "Reliability of Large Real-Time Control
Software Systems," Proc. 1973 "EEE Symp. Computer Software
Reliability, Brooklyn Poly. Inst. April 1973, pp. 1-6.

Abstract: This paper is written from the point of
view of the design of today's large and complex real-time
computer-based control systems using multi-processor computers.

The software reliability is not under control as a
design tool in anything like the hardware sense. 1In fact, it
is not to clear how tc define software reliability in a precise
way and to measure it. What can we learn about software
reliability by examining hardware reliability theory?

This paper may be viewed in terms of three levels of
definition of software reliability: a) an overall or
high~level definition, b) an intermediate-level definition
(which might be termed a system designer's definition), and c¢)
a low-level, measurement, or nitty~-gritty definition.

D~-10

Merritt, M. J. et al., Characteristics of Software
Quality,"Report 25201-6001-RU-00, TRW Systems, Redondo Beach,
CA (December 1973).

Miller, I. and Freund, J., Probability and Statistics for
Engineers, Prentice-Hall, Englewood Cliffs, New Jersey, 1965.

MIL-STD-483, Configuration Management Practices - . Sy. -=as,
Equipment, Munitions and Computer Programs.

MIL-STD-490, Specification Practices.

Mills, H. D., "On the Statistical Validation of Computer
Programs,"” IBM Report FSC-72-6015, July 1970.

MIPS (Metric Integrated Processing System) Performance and
Design Requirements, System Segment Specification,
MIPS-1023-3117,C6, Data Processing Directorate, Federal
Electric Corporation, Vandenberg Air Force Base, Ca, Contract
No. F04701-72-C-0203 (29 November 1976).

Moranda, P., "Probability-Based Models for the Failures During
Burn-In Phase”, Joint National Meeting ORSA/TIMS, Las Vegas,
Nv' NOV. 1975.

Moranda, P. B. and Jelinski, 2., "Software Reliability
Research", Conference on Statistical Methods for the Evaluation
of Computer Systems Performance, Providence, R.I., Nov 1971.

Moranda, P.B. and Jelinski, Z., "Final Report on Software
Reliability Study". McDonnell Douglas Astronautics Company, MDC
Report No. 63921, Dec 1972.

Munck, R. G.: "Discussion of Session VII, Software
Reliability", Statistical Computer Performance Evaluation,
Freiberger (ed.), Academic Press, New York, 1972, 513-514.

Nelson, E. C. A Statistical Basis for Software Reliability
Assessment, TRW-5S-73-03, TRW Systems Group, tedondo Beach, CA
(1973).

Abstract: A mathematical definition of the
reliability of a computer program is developed from the
mathematical definitions of a program and program execution
given in Blum's mathematical theory of the semantics of
programming languages. The reliability so defined is
measurable and it is related to the structural properties of
computer programs using concepts borrowed from the PACE system
of automated software test tools.

Ogdin, Jerry L.: "Improving Software Reliability,” Datamation,

D-11

Pierce, William H.: Failure-Tolerant Computer Design, Academic
Press, New York, 1965,

Richards, F. R., "Computer Software; Testing, Reliability,
Models, and Quality Assurance”, Naval Postgraduate School,
Monterey, CA. July 1974,

Rubey, R. J. "Quantitative Aspects of Software Validation,"
Proceedings, 1975 International Conference on Reliable
Software, IEEE Catalog No. 75 CH0940-7 CSR.

Abstract: This paper discusses the need for
quantitative descriptions of software errors and methods for
gathering such data. The software development cycle is
reviewed and the frequency of the errors that =2-e detected
during software development and independent validation are
compared. Data obtained from validation efforts are presented,
indicating the number of errors in 10 categori~s and three
severity levels; the inferences that can be drawn f£r-m this
data are discussed. Data describing the effectiveness of
validation tools and techniques as a function of tine are
presented and discussed. The software validation cost is
contrasted with the software development cost. The
applications of better quantitative software error data are
summarized.

Rudner, Beulah "Design of a Seading/Tagging Reliability Test,"
in Cummary of Technical Progress, Software Modling Studies,
RADC-TR-76-143, Rome Air Development Center (May 1976).

Schick, G. J.; Wolverton, R. W.: "Assessment of Software
Reliability”, MDAC Paper WD 1872, McDonnell Douglas
Corporation, August 1972,

Abstract: This paper discusses the problems in
achieving reliability of large-scale software systems.
Comparative studies of a contemporary U.S. Air Force software
project, a NASA software project, and a commercial recal-time
software project are described. Software development and test
management procedures which lead to software reliability are
analyzed. The underlying premise advnaced is that sof ... =&
reliability must be designud into the system from the - ~“1ning
using a systems approach. The paper describes the sy - - -
approach to software reliability which requires (1)
understanding of the total software development and test life
cycle, (2) identification of conventional and extended
conventional test techniques for precision validation testing
of applications programs, and (3) allo-ation of resources in a
cost-and perrormance-effective manner, in advance, over the
entire development period. The paper focuses on the testing
approach, test planning and integration, deficiency reporting
and control, and data collection and analysis.

D-12

Schneidewini, N. "A Methodology for Software Reliability
Prediction and Quality Control," Naval Postgraduate School
Technical Report NPS558S72111A, November 1972,

Abstract: The increase in importance of software in
command control and other complex systems requires increased
attention to the problems of software reliability and quality
control. This paper reports on initial attempts to develop a
methodology for Naval Tactical Data System software reliability
and presents the results of several statistical analyses which
were performed in order to obtain an appreciation for the
statistical characteristics of software reliability data. An
approach to analyzing software reliability problems is outlined
and a methodology “or reliability prediction and quality
control is presented. Characteristics of software relianbility
statistical distributions are reported.

Schneidewind, N. F. "An Approach to Software Reliability
Prediction and@ Quality Control," Fall Jo.nt Computer
Conference, 1972, pp. 837-847.

Abstract: The increase in imporoance of software in
command and control and othe:r complex systems has not been
accompanied by commensurate progress in the development of
analytical techniques for the measurament of software quality
and the prediction of software reliability. This paper
presents a rationale for implementing software reliability
programs; defines software reiability; and describes some of
the problems o. performing s ware reliability analysis. A
software reliability progran :g outlined and a methodology for
reliability prediction and quality control is presented. The
results of initial efforts to develop a software reliability
methodology at the Naval Electronics Laboratory Center are
reported.

Shoor:n, M. L. and Nataraijan, S. "Effect of Manpower Deployment
and I -uc¢ Generation on Software Reliability." Proceedings of
the Lymposium on Computer Software Engineering XXIV, MRI
Symposia Series, Polytechnic Press, Brooklyn, NY (1975).

fhooman, Martin L.: "Operational Testing and Software
Reliability Estimation During Program Development", Record,
IEEE Symposium on Computar Software Reliability, 1973.
Abstract: This paper discusses some quantitative
models which can be used to measure, manage, and predict the
level of perfection (fruedom from bugs) of software during the
development and test stajes. The :neasures used are the
reliability function, R(t), and ‘he mean time between software

D-13

failures, MTTF, both of which improve as more resources {time,
man-hours, computer-hours) are expended on the program. The
methodology described is most applicable to the last (but
extensive) phase of software development generally called test
and integration.

In order to calculate the MTTF and R(t) one needs test
data on the system, or since we wish to predict, on a
preliminary version of the system. The obvious choice is the
succession of updated versions of the software produced during
system integration. It is proposed that the functional
software test program (system exerciser) written to test all
large software systems be used to generate this data. The only
additional efforts required over a normal test program to
obtain the necessary data are: (a) careful post-analysis of
test results to segregate hardware, software, and operator
errors, and (b) running of the functional test occasionally
during the entire system integration phase ratl.er than just at
the end.

A plot of the MTTF versus time yields a growth curve.
Once several points on the curve have been established the
future behavior (during test and integration and immediately
after program release) can be predicted by extrapolation.
Unless a technique well suited to the physical problem is used,
extrapolation can be very misleading. A much better technique,
requiring fewer data points for-the same prediction accuracy,
is to postulate an underlying model for error removal and use
the test data to estimate the model constants. The error model
used in this paper is based on previous work relating R(t) and
MTTF to debugging data. The number of errors remaining in a
software program is probabilistically modeled in terms of the
number of errors corrected, the program size and the initial
number of errors. An additional assumption is made that the
software failure rate (crash rate) is proportional to the
number of remaining errors. This allows one to write an
expression for the sofiware reliability and the mear time to
software failure. To evaluate the two constants in the model,
it is necessary to collect test data of the type previously
described at a minimum of two separate points in the test and
integration phase. If data is taken at more than two points
the additional data sets may be used to study the consistency
of the parameters and validate or suggest changes in the basic
model. 1If the model is validated and the paired parameter
estimates are consistent, then the data at the several test
poin.s can be used for a pooled estimate.

D-14

Shooman, Martin L.: "“Probabilistic Models for Software
Reliability Prediction®, Statistical Computer Performance
Evaluation, Freiberger (Ed.), Academic Press, New York, 1972,
Abstract: With the advent of large sophisticated
hardware-software systems developed in the 1960s, the problem
of computer system reliability has emerged. The reliability of
computer hardware can be modeled in much the same way as other
devices using conventional reliability theory; however,
computer software errors regquire a different approach. This
paper discusses a newly developed probabilistyic model for
predicting software reliability. The model constants are
calculated from error data collected from similar previous
programs. The calculations result in a decreasing probability
of no software errors versus operating time (reliability
function). The rat: at which reliability decreases is a
function of the man-months of debugging time. Similarly, the
mean time between operational software errors (MTBF) is
obtained. The MTBF increases slowly and then more rapidly as
the debugging ecffort (man-months) increases. The model permits
estimation of software reliability before any code is written
and allows later updating to inprove the accuracy of the
parameters wnen integration or operational tests begin.

Shooman, M. L., "Software Reliability: Measurement and
Models", 1975 Annual Reliability and Maintainability Symposium,
Washington, DC, Jan 28-30, 1975.

Abstract: With the advent of large sophisticated
hardware-software systems developed in the 1960s, the problem
of ccmputer system reliability has emerged. The reliability of
computer hardware can be modeled in much the same way as other
devices using conventional reliability theory; however,
computer software errors require a different approach.

The paper begins by describing the types and causes of
software errors and provides working definitions of software
errors and software reliability. Some of the basid data on
frequency of occurrence of errors is then discussed. The
paper then summarizes and references some of the software
reliability models which have been proposed and concentrates on
one developed by the author.

This newly developed probabilistic model predicts
reliability based on the initial number of errors in a program,
the number removed, and the number remaining is the program.
The model constants are calculated from operational test data
on the software performance.

The calculations result in a decreasing probability of
no software errors versus operating time (reliability
function). The rate at which the reliability decreases is a
function of the man-months of debugging time. Similarly, the
mean time to occurrence of operational software errors (MTTF)
is obtained. The MTTF increases slowly and then more rapidly

D-15

as the debugging effort (man-months) increases. The model
permits estimation of software reliability before any code is
written and allows later updating to improve the accuracy of
the prediction when integration or operational tests begin.

Shooman, M., et al, "Summary of Technical Progress Software
Modeling Studies®™, Polytechnic Institute of New York,
RADC-TR-75-245, Interim Report, Jun 19275 (Under RADC Contract
F30602-75-C-0294) (AD AO0l8 G18).

Abstract: During the period of time of 1 October 1974
to 30 June 1975, Polytechnic Institute of New York conducted
research uinder RADC contract F30602-74-C-0294 in the area of
software reliability. This report presents the progress of
this research. Subjects of investigation were Markov models
for the prediction of software availability, theortetical
models for software testing, automatic programming, automatic
testing of programs and collection of error data, estimation of
the initial number of prwgram errors, program complexity and
hierarchies of computable functions.

Research into the use of Markov models for prediction
of software availability has been completed and a report
RADC-TR-75-169, "Computer Software Reliability: Many-State
Markov Modeling Techniques,"™ has been published covering this
topic. This technique involves using a statistical model to
predict cvhe future performance of software using past
per formance data.

Theoretical models have been studied concerning
software tesving fot use in determining the minimum number of
tests that are necessary to verify that a program has been
completely tested. This involves determining the paths that
are contained in the program and the number of tests necessary
to test each path.

The seedina and tagging approach for estimating the
number of software errors in a program has been investigated
and experiments have been planned to verify this approach.
This method of estimating the initial error content of a
program involves several people debugging the same program.
The total number of errors are then statistically determined
using the number of errors found by each person that are
contained in common with a "tagged" set of erctors.

The possibility of reducing chances for program errors
by matching the power of the programming language to the
complexity of the problem being solved is being addressed by
the investigation of hierarchies of computable functions
defined bvy substitution and recursion. This research relates
to the extension of basic automata theory to set up degrees of
difficulty in computation and to adapt the schemata provided by
recursive function theory to programming in higher level
languages with more useful data types.

Sukert, A. N. "A Software Reliability Modeling Study" Rome Air
Development Center (ISIS) Griffis Air Force 3dase, NY
RADC-TR-76-247 Aug 1976 (AD A030437).

Thayer, T. A., et al., Software Reliability Study, Final
Technical Report, 76-2260.1.9-5, TRW Defense and Space Systems
Group, One Space Park, Redondo Beach, CA, Contract No.
F30602-74-C-0036 (19 March 1976).

Abstract: A study of software errors is presented.
Techniques for cateqgorizing errors according to type,
identifying their source, and detecting them are discussed.
Various tec'niques used in analyzing empirical error data
collected from four large software systems are discussed and
results of analysis are presented. Use of results to indicate
improvements in the error prevention and detection processes
through use of tools and techniques is also discussed.

A survey of software reliability models is included,
and recent work on TRW's Mathematical Theory of Software
Reliability (MTSR) is presented.

Finally, lessons learned in conjunction with
collecting software data are outlined, with recommendations for
improving the data collection process.

Thompson, W. and Walsh, D. "Reliability and Confidence Limits
for Computer Software," General Research Corporation Report.

Trauboth, H., "Guidelines for Documentation of Scientific
Software Systems," Proc. 1973 IEEE Symp. Comput : Software
Reliability, Brooklyn Poly. Inst., April 1973, pp. 124-131.

Tribus, Myron; Pitts, Gary: "The Widget roglem Revisited”,
IEEE Trans. on Systems Science and Cyberrnctics, Volume SSC-4,
No. 3, September 1968, 241-248.

Abstract: The Jaynes "widget problem” is reviewed as
an example of an application of the principle of maximum
entropy in the making of decisions. The exact solution yields
an unusual probability distribution. The problem illustrates
why some kinds of decisions can be made intuitively and
accurately, but would be difficult to rationalize without the
principle of maximum entropy.

Trivedi, A. K. and Shooman, M., "Computer Software
Reliability: Many~State Markov Modeling Techniques”,
Polytechnic Inst. of New York, RADC-TR-75-169, Interim Report,
Jul 1975 (Under RADC contract F30602-74-C0294, Software
Modeling Studies). (AD A0014824),

Abstract: Many-state Markov models have been
Geveloped for the purpose of providing quantitative reliability
criteria for computer software. The software system under
consideration is assumed to be large, so that statistical

D-17

deductions become meaningful, and is assumed to initially
contain an unknown number of bugs. The basic models provide
estimates and predictions for a quantifier that represents the
state of debugging of the system and which is generally the
most probable number of software errors that will have been
corrected at a given time in the operation of this software
system based upon preliminary modeling of the error occurrence
rate and the error correction rate. The models also provide
predictions for the availability and for the reliability of the
system. The differential equations corresponding to the basic
many-state Markov models are solved for verification and
demonstrative purposes.

Manufacturer's data have been obtained on this
performance of system software for a medium-sized software
operating system. These data have been analyzed to obtain
frequency distributions of the random variables representing
the time to close software error reports. The data are then
used for application of the basic many-state Markov model. A
general discussion of error data collection is undertaken in
some detail, and suggestions are made for possible improvements
in software error data documentation practices.

Various extensions and modifications of the basic
many-state Markov models are discussed. The classes of the so
called many-state Markov G-Models and H-Models are developed to
handle, respectively the case of arbitrary degress of system
degradation and the case of various categories of system "down"
states. The solutions and results of some of these cases are
presented. Finally, the computational efficiency and tradeoffs
involved in the solutions of the many-state Markov models are
disucssed.

Tsiahritzis, D. and Ballard, A. "Software Reliability,"
Il:OR, Vol. 11, No. 2, June 1973, pp. 113-124.

Abstract: Our approach assumes that there is
increasing interest in both practical and theoretical aspects
of the reliability of computer software, and this paper reviews
many aspects of software design and production which affect
reliability. For the most part, the topics are discussed
relative to simple examples, and with reference to the previous
work »t others; however, a new approach to formally proving
syst.m correctiness is presented. The system can be
r=presented at any instance of time by its state. The progress
o: the system is represented by a state history. Any property
can therefore be described as a relation between states. The
correctness proof is an induction with respect to the sequence
of such states followed during execution. The paper also
covers, in review, program design, protection, programming
style, testing and other topics.

D-18

Wagoner, W. L., "The Final Report on a Software Reliability
Measurement Study", The Aerospace Corp., Report No
TOR-0074(4112)-1, Aug 15, 1973.

Abstract: This report presents the final results of a
Software Reliability Measurement Study performed by the
author. The objectives of the study were as follows:

1. To establish a rudimentary definition of software
reliability.

2. To identify rarameters affecting software failure
rates (e.g., program size, difficulty, programmer
experience, schedule, etc).

3. To determine the critical parameters required for
a software reliability model, including the
distribution of software errors as a function of
time,

The report includes:

1. A definition of terms relative to software
reliability.

2. A section discussing software error detection
rates and parameters which affect this process.

3. A summary of existing models and a comparison
with a model proposed by the author.

4. An annotated list of ereferences on software
reliability.

Weiss, H., "Estimation of Reliability Growth in a Comples
Systems with Poisson Failure,"” Operations Research, Vol. 4,
1956, pp. 532-545.

Welker, E. L. and Lipow, M. "Estimating the Exponential Failure
Rate from Data with No Failure Event," Proceedings 1974 Annual
Reliability and Maintainability Symposium, TIEEE Catalog No.
74CH0820-1RQC (January 1974).

Wolverton, R. W. and Schick, G. J., Assessment of Software
Reliability, TRW-SS-72-04, TRW Systems Group, Redondo Beach, CA
{1972). (Identical with paper in Proc. of the llth Annual
Meeting of the German Operations Research Society, Hamburg,
GERMANY, Sept 1972.)

Zelen, Marvin, (ed.): Statistical Theory of Reliability,
Proceedings of an Advanced Seminar Conducted by the Mathematics
Research Center, US Army, at the University of Wisconsin,
Madison, May 8--10, 1962, University of Wisconsin Press, 1963.

D-19

